AD-A105 840

NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY F/6 13/15
NATIONAL DAM SAFETY PROGRAM. ALDER POND DAM (INVENTORY NUMBER N--ETC(U)
JUN 81 6 KOCH

DACW51-79-C-0001

NL

END
CONTROL

AD A 1 0 5 8 4 0

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

13. KEY WORDS (Continue on reverse wide II necessary and identity by block number)
Dam Safety

National Dam Safety Program

Visual Inspection

Hydrology, Structural Stability

Alder Pond Dam Oneida County Black River Basin

3. ABSTRACT (Cucture on service alde II necessery and Identify by block number)

This reflect provides information and analysis on the physical condition of the dam as in the report date. Information and analysis are based on visual inspection of the imm by the performing organization.

Visual inspection of this dam and engineering analyses performed didnot reveal conditions which constitute an immediate hazard to human life or property.

DD FORM 1473 EDITION OF I NOV 65 IS OBSOLETE

الغ

SECURITY CLASSIFICATION OF THIS PAGE (M

The outflow capacity at this structure is inadequate for the peak outflow from one half the Probable Maximum Flood (PMF). However, a dam break analysis indicates that a dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from that which would exist just prior to the failure Hence, the spillway is assessed as inadequate ever though this damidoes not have a spillway in the visual sense.

Several minor deficiencies were noted on this structure. Among the actions required are brush and trees growing on the dam embankment should be cut, areas of minor sloughing on the upstream slope should be repaired, and an emergency action plan for the notification of downstream residents should be developed. These actions should be completed within 6 months of the date of notification of the owner.

Acces	sion For	
NTIS	GRA&I	X
DTIC	TAB	
Unant	ounced	
Justi	fication	
	ibution/ lability	
	Avail an	d/or
Dist	Specia	ı
1	13 51	
14		
	1(*1	,

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM ALDER POND DAM I.D. No. NY-1489 # 127A-4417 BLACK RIVER BASIN ONEIDA COUNTY, NEW YORK

TABLE OF CONTENTS

		PAGE NO
-	ASSESSMENT	~
-	OVERVIEW PHOTOGRAPH	-
i	PROJECT INFORMATION	1
1.1	GENERAL	1
1,2	DESCRIPTION OF PROJECT	1
1,3	PERTINENT DATA	2
2	ENGINEERING DATA	4
2.1	GEOTECHNICAL DATA	4
2.2	DESIGN RECORDS	4
2.3	CONSTRUCTION RECORDS	4
2.4	OPERATION RECORDS	4
2,5	EVALUATION OF DATA	4
3	VISUAL INSPECTION	5
3.1	FINDINGS	5
3,2	EVALUATION OF OBSERVATIONS	5
4	OPERATION AND MAINTENANCE PROCEDURES	7
4.1	PROCEDURES	7
4.2	MAINTENANCE OF DAM	7
4.3	WARNING SYSTEM IN EFFECT	7
4 4	EVALUATION	7

		PAGE NO.
5	HYDROLOGIC/HYDRAULIC	8
5.1	DRAINAGE AREA CHARACTERISTICS	8
5.2	ANALYSIS CRITERIA	8
5.3	SPILLWAY CAPACITY	8
5.4	RESERVOIR CAPACITY	8
5.5	FLOODS OF RECORD	9
5.6	OVERTOPPING POTENTIAL	9
5.7	EVALUATION	9
6	STRUCTURAL STABILITY	10
6.1	EVALUATION OF STRUCTURAL STABILITY	10
7	ASSESSMENT/RECOMMENDATIONS	11
7.1	ASSESSMENT	11
7.2	RECOMMENDED MEASURES	11

APPENDIX

- A. PHOTOGRAPHS
- B. VISUAL INSPECTION CHECKLIST
- C. HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS
- D. REFERENCES
- E. DRAWINGS

Phase I Inspection Report National Dam Safety Program

Name of Dam:

Tider fond Dam

State Located:

Mary York

County Located:

freida

Watershed:

Plack Piver Pasin

Date of Inspection:

Ostober 16, 1980

ASSESSI'ENT

Visual inspection of this dam and engineering anylongs performed did not reveal conditions which constitute an immediate a zame to human life or property.

The outflow conacity at this structure is inadequate for the peak cutflow from one half the Probable Maximum Floor (1987). day break analysis indicates that a dam failure of withing from overtopring would not significantly increase the had a to loss of life downstream from that which would exist just noise to the failure Fence, the smillway is assessed as inadequate even abough this day does not have a spillway in the visual sense.

Several minor deficiencies were noted on this standard. Among the actions required are brush and trees growing of the should be cut, areas of minor sloughing on the outwar slope should be repaired, and an emergency action plan for its ortification of downstream residents should be developed. These actions should be completed within 6 months of the date of notifies for of the owner.

> George Meca Chief, Dam Safe & Section New York State Conantment of Environmental Conservation NY License No. 75937

: YB CT "GOOS

Col. ...!'. Smith dr.

New York District Engineer

TATE:

119 元

1 🚜 JUN 1981

OVERVIEW ALDER POND DAM J,D. No. N.Y. 1489

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
ALDER POND DAM
I.D. No. NY-1489
127A-4417 BLACK RIVER BASIN
ONEIDA COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority
The Phase I inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection
This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam The Alder Pond Dam is an earth dam with a feeder canal which acts as an outlet channel.

The dam is approximately 550 feet long and about 15 feet high. The crest of the embankment is extremely wide averaging over 50 feet. Both the upstream and downstream slopes of the embankment are relatively steep (1 vertical on 1 horizontal). The upper portion of the upstream slope is grassed. There is timber sheeting driven into the pond along the lower portion of the upstream slope.

The Black River Feeder Canal (Forestport Feeder) begins at the left end of the embankment. The canal has a trapezoidal cross section with a bottom width of 33 feet. There is a concrete control structure located in the canal side embankment about 150 feet downstream of the dam. This structure can act as a spillway, allowing water to flow out of the canal and into the Black River. Stop logs in this control structure are used to provide some regulation of flow.

There is a gated diversion structure located about 600 feet east of this dam which regulates the portion of inflows to this reservoir which come from the Forestport Reservoir. This structure consists of 3 vertical slide gates controlled from a gate house directly above the diversion structure. Water flows along a canal and enters Alder Pond near the right end of the embankment.

b. Location
This dam is located in the Town of Forestport, Oneida County. It is just off Dutch Hill Road and is about 1/4 mile south of the Village of Forestport.

c. Size Classification

The dam is 15 feet high and has a maximum storage capacity of 61 acre feet. Therefore, the dam is in the small size category as defined by the "Recommended Guidelines for Safety Inspection of Dams."

d. Hazard Classification

The dam is classified as "high" hazard due to the presence of several houses located immediately downstream of the embankment.

e. Ownership

This dam is owned by the New York State Department of Transportation, Waterways Maintenance Subdivision. It is located in DOT - Region 2, whose headquarters are in Utica, New York. The addresses of the Main Office and the Regional Office are as follows:

New York State DOT
Main Office - State Campus
1220 Washington Avenue
Albany, NY 12232
Mr. Joseph Stellato
Director
(518) 457-4420

New York State DOT Region 2 Office State Office Building 207 Genesee Street Utica, NY 13501 Mr. Frank Jennings Regional Waterways Maintenance Engineer (315) 797-6120

f. Purpose of Dam

The dam was constructed to provide water for the Black River Canal. The reservoir is now used to divert water to the DOT Barge Canal via the Black River Canal feeder.

g. Design and Construction History

This dam was reportedly constructed around 1850. No design or construction information was available for this structure.

h. Normal Operating Procedures

There are no estabilished operating procedures for this structure. Stop logs are placed in the concrete control structure and the gates on the diversion structure from Forestport Reservoir are opened when additional water is required for the Barge Canal.

1.3 PERTINENT DATA

a. Drainage Area (sq. mi.)	5.18
b. Discharge at Dam (cfs) Concrete control structure at Maximum High Water:	
with stop logs in place	424
with stop logs removed	516
Black River Feeder Canal at Maximum High Water	133
<pre>c. Elevations (USGS Datum) Top of Dam Bottom of Feeder Canal at Inlet</pre>	1130.7 1124
d. Reservoir - Surface Area (Acres) Top of Dam	10.1
e. Storage Capacity (acre-feet) Top of Dam	61.1

f. Dam

Type: Earth embankment with timber sheeting on upstream face.

Embankment Length (ft)

550

Slope (V:H) Upstream Downstream

1:1

Crest Width (ft)

55

g. Spillway

Type: Black River Feeder Canal; Trapezoidal Channel with bottom width of 33 feet; canal extends approximately 12 miles to Delta Reservoir. Concrete control structure located in canal embankment; stop logs can be used to regulate flows in canal.

h. Reservoir Drain - None

i. Appurtenant Structures

Diversion Structure at Foresport Reservoir - 3 wooden slide gates can be used to increase inflow to reservoir. Gatehouse located on top of structure.

SECTION 2: ENGINEERING DATA

2.1 GEOTECHNICAL DATA

a. Geology
The Alder Pond Dam is located in the Black River Valley portion of the Mohawk Lowlands physiographic province of New York State. This is a north-south lowland between the Adirondacks on the east and the Tug Hill upland on the west. Bedrock in this area is generally sedimentary, including limestones, shales and sandstones. The surficial soils and features of the area are the result of glaciations during the Cenozoic Era, the last of which was the Wisconsin glaciation.

A review of the "Brittle Structures Map of the State of New York" indicated that there are no faults in the immediate vicinity of the dam.

b. Subsurface Investigations No records of any subsurface investigations performed for this structure were available.

2.2 DESIGN RECORDS

There were no design records available for this structure.

2.3 CONSTRUCTION RECORDS

No construction records for this structure could be located.

2.4 OPERATION RECORDS

There are no regular operation records maintained for this structure.

2.5 EVALUATION OF DATA

Data available for the preparation of this report was extremely limited. Most of the information used was based on measurements made at the time of the inspection. The Phase I inspection report was prepared using the limited data plus certain qualifying assumptions.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

Visual inspection of the Alder Pond Dam was conducted on October 16, 1980. The weather was overcast and the temperatures were in the low fifties. The water surface at the time of the inspection was very low with a large sand bar exposed within the reservoir.

b. Embankment

The dam has a very wide crest and steep slopes. The crest is partially grassed but a dirt road along the top of the dam extends across much of the crest. There is grass on the upper portion of the upstream face. Several areas of minor sloughing were noted on this part of the slope. The lower portion of the upstream face has timber planking acting as slope protection. Some rotted and deteriorated timbers were noted, but most were in satisfactory condition.

A detailed inspection of the downstream face was impossible due to the brush and trees covering the slope. There were several houses and other buildings just beyond the downstream toe. A portion of the slope had been excavated, at the left end of the dam for the back corner of a garage. Several swampy areas were noted beyond the toe of the dam, but these appeared to be caused by poor drainage and not by seepage.

c. Spillway - Black River Feeder Canal
The feeder canal acts as a spillway for this structure. The portion of
the trapezoidal rock filled channel which was inspected was in satisfactory
condition. The visual inspection for this report only went as far as the
concrete control structure about 150 feet down the canal from the dam.
This structure was in good condition with no deterioration or cracking
of concrete noted. There was one stop log each in two of the three bays
of this structure.

d. Diversion Structure

The concrete diversion structure located on Forestport Reservoir was in satisfactory condition. There was some minor concrete deterioration noted on this structure. The gates controlling flow were reported to be operational.

e. Reservoir

The pond appeared to be quite shallow. A large sand deposit was exposed in the reservoir near the right end of the dam. Mear the left end was a deteriorated wood framework extending from the upstream slope out into the pond. The purpose of this framework could not be determined. The reservoir banks were wooded up to the edge of the pond.

3.2 EVALUATION OF OBSERVATIONS

Visual inspection of the dam revealed several deficiencies. The following items were noted:

- 1. Brush and trees growing on the downstream slope.
- 2. A portion of the slope had been excavated for the back corner of a garage.
- 3. Several areas of minor sloughing on the upstream slope.
- 4. Minor concrete deterioration on the diversion structure.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

This structure diverts water into the New York State Barge Canal as required. Gates on the diversion structure at Forestport Reservoir are opened to increase the inflow to the pond. The water then flows into the Black River Feeder Canal which begins at the left end of the dam. Stoplogs are installed or removed from the concrete control structure to vary the flow in the canal.

4.2 MAINTENANCE OF DAM

There are no formal maintenance procedures for this structure. Some routine maintenance is performed as required by the Department of Transportation.

4.3 WARNING SYSTEM IN EFFECT

No apparent warning system for evacuation of downstream residents is present.

4.4 EVALUATION

The operation procedures on this dam are generally satisfactory. The deficiencies noted on the structure are evidence of the need for additional maintenance efforts.

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

The delineation of the contributing watershed to this dam is indicated on the map titled "Drainage Area Map - Alder Pond Dam (Appendix C). The irregular but somewhat diamond - shaped, northeast - southwest oriented watershed of some 5.18 square miles (3316 acres) is comprised of relatively underdeveloped lands consisting of woodlands, forests, and wetlands interspersed along the primary tributaries to Alder Creek. Slopes along these tributaries are flat (less than 4%). However, the adjacent hillsides have moderate to steep slopes; with those hills forming the watershed divide ranging from 300 feet to 450 feet in elevation above the reservoir. There are no other sizeable bodies of water within the watershed. A gated diversion structure located approximately 600 feet east of the dam regulates additional inflows to this reservoir from the Forestport Reservoir. The Forestport Reservoir which is at an elevation about 3 feet higher than Alder Creek Pond is located directly on the Black River.

5.2 ANALYSIS CRITERIA

No hydrologic/hydraulic information was available regarding this dam. Therefore, the analysis of the floodwater retarding capability of the dam was performed using the Corps of Engineers HEC-1 computer program, Dam Safety version. The computer program develops an inflow runoff hydrograph using the "Snyder Unit Hydrograph" method and then reservoir routs the hydrograph using the "Modified Puls" flood routing procedure.

Although the dam does not have a spillway, the Black River Canal and the nearby concrete control structure were considered as functioning as the spillway. The spillway design flood selected for analysis was the Probable Maximum Flood (PMF), in accordance with the Recommended Guidelines of the U.S. Army Corps of Engineers. The PMF event is that hypothetical storm event resulting from the most critical combination of rainfall, minimum soil retention, and direct runoff to a specific site that is considered reasonably possible for a particular watershed.

5.3 SPILLWAY CAPACITY

Outflows from the reservoir are directed down the canal and can be discharged into the Black River via the stop log control structure. The flow capacity in the canal was analyzed using the Manning's equation for open channel flow. The stop log control structure was analyzed for weir flow using a discharge coefficient, C, of 2.63 (all stop logs removed). The computed total outflow capacity from the reservoir when all stop logs are removed is 649 cfs.

The flood analysis performed for this dam indicates that the spillway capacity is not sufficient for discharging one-half the PMF. For this storm event, the peak inflow and the peak outflow are 2030 cfs. The PMF peak inflow and peak outflow are 3825 cfs and 3740 cfs respectively.

5.4 RESERVOIR CAPACITY

The reservoir is relatively shallow, being approximately 6 feet deep near the embankment crest. The total storage capacity is 61 acre-feet.

5.5 FLOODS OF RECORD

The date of occurrence of the maximum flood at the dam site is not known.

5.6 OVERTOPPING POTENTIAL

Analyses using the PMF and one-half PMF storm events indicates that the spillway capacity is not sufficient. The computed depths of overtopping for these two events are 1.54 feet and 0.88 feet respectively. All storm events exceeding 17% of the PMF will result in the dam being overtopped.

Since the dam is an earth embankment and can be overtopped during large storm events a dam-break analysis was performed to assess the affect in the downstream channel of outflows resulting from non-failure and failure conditions. The analyses indicates that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just prior to an overtopping-induced failure.

5.7 EVALUATION

This dam does not have a spillway. Outflows from the reservoir are directed down the Black River Canal which has a stop log control structure located approximately 150 feet from the dam. The flow capacity of these facilities is not sufficient for discharging one-half the PMF. A dam-break analysis indicates that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just prior to an overtopping-induced failure. Therefore, the spillway is assessed as inadequate.

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

Both the upstream and downstream slopes on this structure were steeper than recommended values. Some minor sloughing was noted on the upstream face. However, due to the relatively low height of the embankment and the wide crest, these oversteepened slopes are not a serious deficiency.

Trees and brush covered the entire downstream face of the dam. There were several swampy areas noted beyond the toe of the dam, probably caused by poor drainage.

b. Design and Construction Data

No information was available concerning the design or construction of this dam.

c. Seismic Stability

This dam is located in Seismic Zone 2. No seismic stability analysis was performed for this report.

SECTION 7: ASSESSMENT/RECOMMENDATIONS

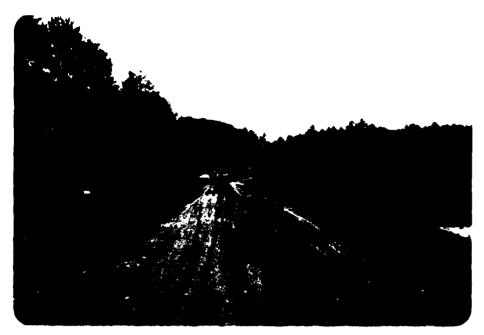
7.1 ASSESSMENT

a. Safety
The Phase I inspection of the Alder Pond Dam did not reveal conditions which constitute a hazard to human life or property. While the embankment slopes are relatively steep, the embankment height is low and the crest is wide. Therefore, the embankment is considered to be stable.

The spillway capacity is inadequate for the peak outflow from one half the Probable Maximum Flood (PMF). However, a dam break analysis indicates that dam failure resulting from overtopping would not significantly increase the hazard to loss of life from that which would exist just prior to the failure. Therefore, the spillway is assessed as inadequate.

b. Adequacy of Information There was very little information available for the preparation of this report. Most of the information used was obtained from observations and measurements made at the time of inspection.

c. Need for Additional Investigations No additional investigations are needed at this time.


7.2 RECOMMENDED MEASURES

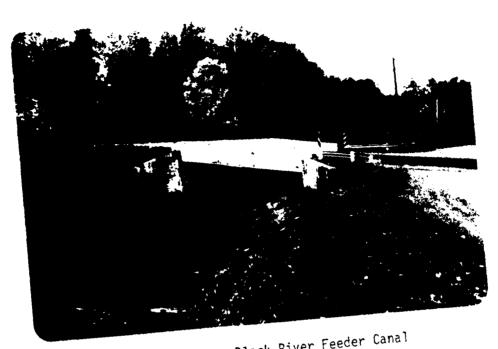
The following actions should be completed within 6 months of the date of notification of the owner:

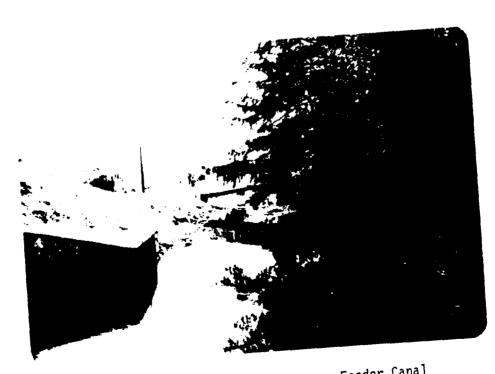
- a. Brush and trees growing on the dam embankment should be cut.
- b. Areas of minor sloughing on the upstream slope should be repaired.
- c. Develop an emergency action plan for the notification of downstream residents.

APPENDIX A

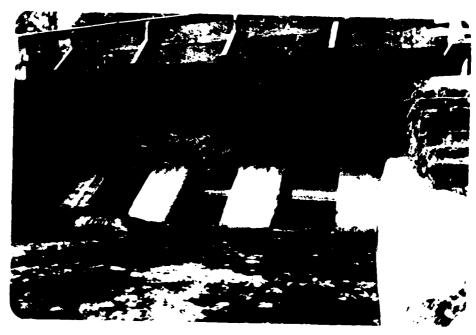
PHOTOGRAPHS

Crest of Embankment - Note Road Along Crest

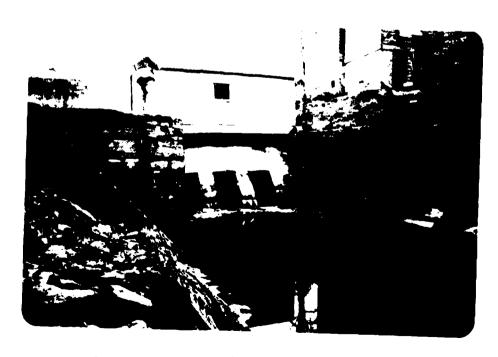

Upstream Slope of Dam - Note Timber Planking on Lower Portion


Downstream Slope of Dam - Note Trees Growing on Embankment

Downstream Toe - Excavation for Garage


Entrance to Black River Feeder Canal (Forestport Feeder)

View Looking Upstream Along Feeder Canal from Concrete Control Structure


Upstream Side of Concrete Control Structure - Looking Perpendicular to Flow in Canal

Dcwnstream Side of Concrete Control Structure

Diversion Structure on Forestport Reservoir

Gates on Diversion Structure which Control Flow into Adler Pond

Canal Leading from Diversion Structure to Alder Pond

Diversion Canal's Entrance to Alder Pond - Note Sand Bar in Reservoir

APPENDIX B
VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

as	
•	General
	Name of Dam ALDER POND DAM
	Fed. I.D. # 1489 DEC Dam No. 127A-4417
	River Basin BLACK
	Location: Town ALBER CREEK County ONEIDA
	Stream Name ALDER CREEK
	Tributary of BLACK RIVER
	Latitude (N) 43° 26.3′ Longitude (W) 75° 12.5′
	Type of Dam EARTH FILL
	Hazard Category HIGH
	Date(s) of Inspection 10/16/80
	Weather Conditions 50° OVERCAST
	Weather Conditions 50° OVERCAST Reservoir Level at Time of Inspection VERY LOW W/No DIVERSION FROM
	-
	Reservoir Level at Time of Inspection YERY LOW W/ No DVERSION FROM
	Reservoir Level at Time of Inspection YERY LOW W/ No DVERSION FROM
	Reservoir Level at Time of Inspection VERY LOW W/No DVERSKN FROM Inspection Personnel R. WARRENDER W. LYNICH
	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSKN FROM Inspection Personnel R. WARRENDER W. LYNICK Persons Contacted (Including Address & Phone No.)
	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSION FROM Inspection Personnel R. WARRENDER W. LYNICK Persons Contacted (Including Address & Phone No.) F. JENAINGS - DOT REGION 2 STATE OFFICE BLOG.
	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSION FROM Inspection Personnel R. WARRENDER W. LYNICH Persons Contacted (Including Address & Phone No.) F. JENNINGS - DOT REGION 2 STATE OFFICE BLOG. UTICA N.Y.
•	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSION FROM Inspection Personnel R. WARRENDER W. LYNICH Persons Contacted (Including Address & Phone No.) F. JENNINGS - DOT REGION 2 STATE OFFICE BLOG. UTICA N.Y.
•	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSIGN FROM Inspection Personnel R. WARRENDER W. LYNICH Persons Contacted (Including Address & Phone No.) F. JENNINGS - DOT REGION 2 STATE OFFICE BLOG. UTICA N.Y. (315) 797-6120 Ext. 2443 History:
•	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSKN FROM Inspection Personnel R. WARRENDER W. LYNICK Persons Contacted (Including Address & Phone No.) F. JENNINGS - DOT REGION 2 STATE OFFICE BLOG. UTICA N.Y. (315) 797-6120 Ext. 2443
•	Reservoir Level at Time of Inspection VERY LOW WAS DIERSKA FROM Inspection Personnel R. WARRENDER W. LYNICK Persons Contacted (Including Address & Phone No.) F. JENAINGS - DOT REGION 2 STATE DEFICE BLOG. UTICA N.Y. (315) 797-6120 Ext. 2443 History: Date Constructed Around 1850 Date(s) Reconstructed
•	Reservoir Level at Time of Inspection YERY LOW W/NO DVERSIGN FROM Inspection Personnel R. WARRENDER W. LYNICH Persons Contacted (Including Address & Phone No.) F. JENNINGS - DOT REGION 2 STATE OFFICE BLOG. UTICA N.Y. (315) 797-6120 Ext. 2443 History:

a.	Char	racteristics
	(1)	Embankment Material GLACIAL T.LL LENGTH 550 From
		Embankment Material GLACIAL T.L. LENGTH 550 FROM AT MODE MAPLE TREE VIC END OF BRIDGE ABUTMENT WALL
	(2)	Cutoff Type NonE
	(3)	Impervious Core Noné
	(4)	Internal Drainage System None
	(5)	Miscellaneous POND BOTTOM EXPOSED IN VICINITY OF UPSTREAM TOE OF SLOPE
b.	Cres	
	(1)	Vertical Alignment SATIS FACTORY
	(2)	Horizontal Alignment SAT/SFACTORY
	(3)	Surface Cracks
	(4)	Miscellaneous EXTREMELY WIDE CREST - ROADWAY & DOT MAINTENANCE BUILDINGS ON CREST - WIDTH 54" T
c.	Upst	ream Slope
	(1)	Slope (Estimate) (V:H) [:] (STEEP)
	(2)	Undesirable Growth or Debris, Animal Burrows None - Mowed
	(3)	Sloughing, Subsidence or Depressions MIXOR AREAS OF SCOUGH

(DEPTH=6") at OR BELOW NORMAL WATER LEVEL

AREAS HAVE GRASS GROWING ON & THROUGH THEM

	(4)	Slope Protection GRASS AT 4,5 BELOW TOP OF DAM
		SLOPED TIMBER FACING (NORMALLY SUBMERGED) GOES
		DOWN INTO POND BOTTOM
	(5)	Surface Cracks or Movement at Toe NONE NOTED
d.	Down	stream Slope
	(1)	Slope (Estimate - V:H)
	(2)	Undesirable Growth or Debris, Animal Burrows LARGE TREES ON SCOPES AND AT TOE - SOME BRUSH AS WELL
	(3)	Sloughing, Subsidence or Depressions NONE OBSERVED ONE AREA WHERE GARAGE BACKWALL WAS CUT /NTO EMBANKMENT
	(4)	Surface Cracks or Movement at Toe None
	(5)	Set 15 NONE
	(6)	External Drainage System (Ditches, Trenches; Blanket)
	(7)	Condition Around Outlet Structure No OUTLET STRUCTURE
	(8)	Seepage Beyond Toe None
e.	Abut	ments - Embankment Contact RIGHT END - EXISTING GROUND SATISFACTORY
		EFT END- INTO BRIDGE ABUTMENTS- OHAY

		(1)	Erosion at Contact No
		(2)	Seepage Along Contact NonE
3)			System ciption of System None
	a.	nesci	ription of System NONE
	•		
	b.	Condi	ition of System
	c.	Disch	narge from Drainage System
4)	Tne:		ntation (Momumentation/Surveys, Observation Wells, Weirs,
7)	Pi	ezome	ters, Etc.)
			NONE
			

b. Sediment Espec c. Unusual 6) Area Downstre	WOODS/TREES TO EDGE OF POND (EST IV: 10 H) RY SHALLOW POND FRATERINE DEPOSITION OF SAND & GRAVEL VALLY AT ENTRANCE TO POND FROM INFLOW CANAL Conditions Which Affect Dam NONE
b. Sediment Espec c. Unusual 6) Area Downstre a. Downstre	cation EXTENSIVE DEPOSITION OF SAND & GRAVEL VALLY AT ENTRANCE TO POND FROM INFLOW CANAL Conditions Which Affect Dam NONE
Espec c. Unusual 6) Area Downstre a. Downstre	Conditions Which Affect Dam NONE
c. Unusual 6) Area Downstr	Conditions Which Affect Dam None
6) <u>Area Downstr</u>	
a. Downstre	
	eam of Dam
	am Hazard (No. of Homes, Highways, etc.) 4 RESIDENCES AT
TOE, 1	HOUSE ON CREST. ROAD DOWNSTREAM; MAINTENANCE BLAG ON CRES
b. Seepage,	Unusual Growth None
c. Evidence	of Movement Beyond Toe of Dam Nove
d. Condition	n of Downstream Channel N/A
7) Spillway(s)	(Including Discharge Conveyance Channel)
DUTFLO	W CONTROL IS FEEDER CANAL - ENTRANCE TO KANAL
AT LEFT	END OF DAM UNDER HIGHWAY BRIDGE
a. General	BOTTOM OF CANAL IS HIGH ENOUGH THAT
17 W	OULD NOT BE POSSIBLE TO DRAIN THE POND
TO A	VERY LOW DEPTH
b. Condition	n of Service Spillway STOP LOG STRUCTURE OFF
FEEL	ER JANAL - 3 OPENINGS - & PROVISIONS FOR
STO	PLEGS IN EACH - STEEL BRIDGE CROSSES
70P	OF SPILLWAY - ENTIRE SPILLWAY STRUCTURE IS
, ,	GOOD CONDITION

. Cond	lition of Auxil	.		
				
				
	CHANNEL	is AF	EEDER CI	ANAL
				
eservo:	ir Drain/Outle	NONE		
Ф.,		Condu	: <u>.</u> .	0 + l
	e: Pipe			Other
Mate	e: Pipe	te	Metal	Other
Mate Size	e: Pipeerial: Concret	te	Metal	Other
Mate Size Inve	e: Pipeerial: Concret	te : Entrance _	Metal	Other
Mate Size Inve Phys	e: Pipeerial: Concrete: e:ert Elevations: sical Condition	: Entrance	Metal	Other
Mate Size Inve Phys	e: Pipeerial: Concrete: ert Elevations: sical Condition	: Entrance _ n (Describe):	Metal	OtherExitUnobservable _
Mate Size Inve Phys Ma	e: Pipeerial: Concrete: ert Elevations: sical Condition aterial:	: Entrance _ n (Describe):	Metal Length Alig	OtherExitUnobservable _
Mate Size Inve Phys Ma	e: Pipeerial: Concrete: ert Elevations: sical Condition aterial:	: Entrance _ n (Describe):	Metal Length Alig	Other Exit Unobservable
Mate Size Inve Phys Ma Je S-	e: Pipeerial: Concrete:ert Elevations:eterial:eterial:eterial:eterial:eterial Integrations:eterial	: Entrance n (Describe):	Metal Length Alig	Other Exit Unobservable
Mate Size Inve Phys Ma Jo	e: Pipeerial: Concrete:ert Elevations:etrical Condition aterial:etructural Integrates:etructural Integrates:etructural Capabi	: Entrance : (Describe): grity:	Metal Length Alig	ExitUnobservable
Mate Size Inve Phys Ma Jo	e: Pipeerial: Concrete:ert Elevations:ert Elevations:	: Entrance : Contract in (Describe): grity: : Gate	Metal Length Alig	Other Exit Unobservable mment Uncontrolle
Mate Size Inve Phys Ma Jo	e: Pipeerial: Concrete: ert Elevations: sical Condition aterial: cints: tructural Integral ydraulic Capabi	: Entrance : Contrance : Entrance : (Describe): : grity: : Ility: : Gate : perable	Metal Length Alig	ExitUnobservable

9) STRUCTURAL- NOT APPLICABLE - EARTH DAM

10)	Appu	rtenant Structures (Power House, Lock, Gatehouse, Other)
	a.	Description and Condition
		INFLOW DIVERSION STRUCTURE - FROM
		FORESTPORT RESERVOIR 3 VERTICAL SLIDE
		GATES EACH GATE 3.75' HIGH \$ 3' WIDE
		WOOD GATES
		INVERT OF GATES TO WATER SURFACE 0.75
		•
		-
		والمراق والمرا

APPENDIX C

HYDROLOGIC/HYDRAULIC ENGINEERING DATA AND COMPUTATIONS

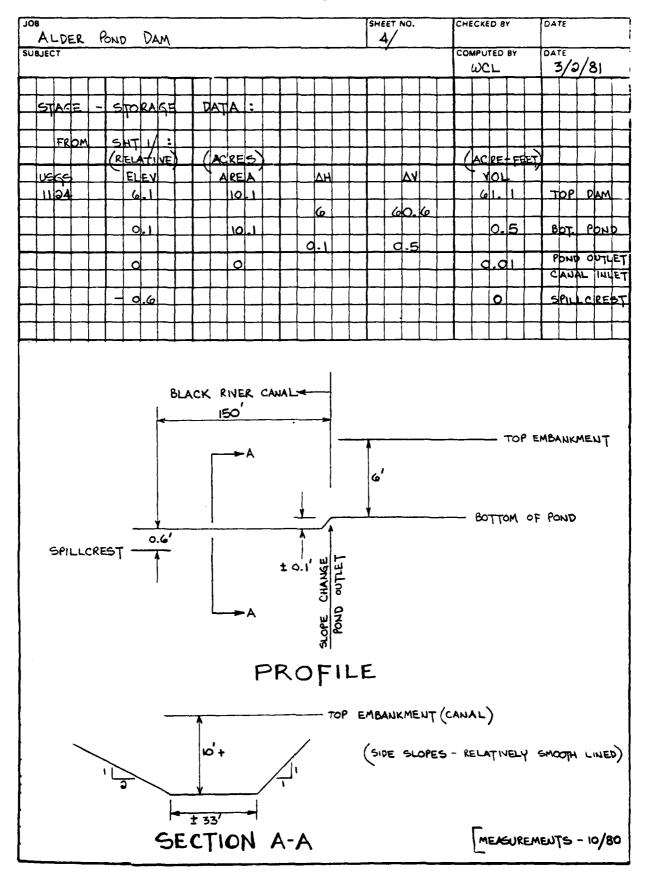
CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

	AREA-CAPACITY DATA:	(RELATINE) Elevation (ft.)	Surface (acre		Storage Capacity (acre-ft.)
1)	Top of Dam	6.7	10.1		61.1
2)	Design High Water (Max. Design Pool)	N/A	···········	·	
3)	Auxiliary Spillway Crest (CANAL STRUCT)	0.0			***************************************
4)	Pool Level with Flashboards	N/A	····		
5)	Service Spillway Crest	NONE			
	DISCHARGES			(c	fs)
1)	Average Daily			N/	<u>A</u>
	₩X. Spillway @ Maximum High	n Water		out - sto	PLOGS → IN 424
3)	Spillway @ Design High	Water		N/	<u>/A</u>
4)	Spillway @ Auxiliary Sp	oillway Crest	Elevation	N	/ <u>A</u>
5)	Low Level Outlet			NO	NE
6)	Total (of all facilitie	es) @ Maximum '	High Water	649	557
7)	Maximum Known Flood	. ,		N/	A
8)	At Time of Inspection			_ 43	

CREST:	(RELAT	'NE) ELEVATI	on: <u>6.7</u>	
Type: <u>EARTH</u>				
Width: ± 54	Le	ngth: <u>550</u>	·	-·
Spillover NONE ; OUTFLOW	S EXIT R	ESERVOIR V	IIA BLACK	RIVER CANAL
Location @ LEFT END OF E	MBANKM ED	T ; BENEAT	H ROADWAY	bridge.
SPILLWAY:				
SERVICE	(>		AUXILIARY	
NONE	(RELATINE) Elevation		0.0	
	Туре	CONCRETE	stolrog s	RUCTURE
	Width	5	5.75	·
Туре	of Control			
Unc	ontrolled			
Co	ntrolled:		✓	
(Flashbo	Type ards; gate		N STOPLOG T = 3.95'	S ABOVE CREST
N	umber	3 OPE	NINGS	
Siz	e/Length	3.5 ['] (T	Υ <u>Ρ.) · ΤΟΙΑ</u>	L L = 10.5'
Invert	Material	CONC	RETE	
	ated Length		A	
Chut	e Length _	≈ á	00'	
& Approac	een Spillw h Channel Meir Flow)		۷۱′	
REGULATED INFLOW - PIVERS (TO RESERVOIR) @ FOR	•	OCTURE G RESERVOIR		OF DAM
control alknothre			DEN GATES DE x 3.75'	
outlet of	gates — inv	ert @ (re	LATIVE) ELE	N. 1.45

HYDROMETEROLOGICAL GAGES:

	Type :	NONE	_
	Location:		_
usgs Gage :	Date -	[LOW FLOW MEASUREMENTS] - UPSTREAM OF RESERVOID DR. AREA = 1	₹ @ RT. IƏ 1.73 SQ.MI —
0495099	ጸ	ading - 10.9 cfs RANGE [3.80 - 10.9]	-
FLO	OD WATER CONTRO	OL SYSTEM:	
	Warning System	m: NONE	
	Method of Con	trolled Releases (mechanisms):	
	NONE	•	


ALDER POND DAM NY-1489

AINAGE ARE	A:	3316	ACRES			5.18	3 SQ MILES
ALNACE BAS	IN DUNCEE	CHADACT	DICTICS.				
AINAGE BAS	IN KUNUFF	RELATI					
	- Type:	UNDEY	ELOPED - C	DOODLANDS			
Terrain	- Relief:	RANGES	FROM FLAT	(ALONG STRE	AMS) TO	STEE	P (HILLSIDES
Surface	- Soil:	GRAVEL	LY SANDY	LOAM			COPPER
Runoff P				extensive a ce conditions		to ex	isting
	NONE			 		·	
				····			
			- h 1	(
Potentia		·		(natural or		•	
	NONE A	PPARENT	-		····		
-			······································				
	l Backwate			levels at ma	aximum sto	rage c	apaci ty
•••		2. c gc	3 t 0 t a g c t				
	NONE						
		 					
	<u> </u>						
	Floodwall: servoir p			erflow) - Lo	ow reaches	along	the
Lo	cation: _	NONE					
EI	evation: .						
Reservoi	r:						
Le	ngth @ Ma	ximum Pod	o1		土	0.5	(Miles)
Le	nath of Si	horeline	(@ Spillway	Crest)	+	1.0	(Miles)

JOB	<u> </u>	DE —	R.				D	 MA				۱۷-	- 1,	 18	9						ET N	NO.			СНЕ	CKE	DΒ	Ÿ		DAI	E	_		
SUBJ	ECT											: <u> </u> (5			<u></u>					L	7-					MPU WC		BY	_	DAT	/2	 7 / 8	١.	
	I	Ϊ						Ľ	Ù																						<u> </u>			
0	RA	4	A	SE	A	RE	A.	<u> </u> :	-	F۶	Ci-7	7	, —·-				59	1	-				AP	ક	_			-		_		_	<u> </u>	<u> </u>
+	+	+		-	_	_		-	-		_	5	CA	LE	÷	$\overline{}$	1 1		1		00	<u>ට</u> පිට	7	4.0	RE	ے	_	-	-	-		-		<u></u>
+	+	\dagger		_	-	AU	D	-	-	A	8 E	A(12		-	1	(Q)	N	-	٦	-	نحت	-	AC	٤٤	3	-	-	 			-		
_}-	_	4	_		50	RE	57	PO	RT		۵	ລ.	34	_	_		_		_	_	_		_		_			_		L.,		_	\sqcup	L
	+-	+	-		_	_	_	-		<u> </u>	-	_	_	_	_	-	-	_		-	-				-	_	-	-		\vdash		-	\vdash	-
+	+	+	_		PC	CFT	7.1	1	E.	-	-	3.	77	-	-	-	-	-		-	-	 		-	H		-	-				-		-
+	\dagger	1			_					\vdash	3	۵.	11		-	->					33	16	A	CR	ES	_		→	5.	18	Ę	Q 1	116	<u> </u>
\perp	T	I																																
+	+	+	4	_				-	_	<u> </u>	<u> </u>	-	<u> </u>	_	-	_	-	-		<u> </u>	_	_	-	<u> </u>	ļ	<u> </u>		-	-	\vdash		_	\vdash	H
+	+	+	\dashv				_	-	\vdash		-	-	-	-	\vdash	/	<u>د</u> ر		-	-	1		E AC	,	\vdash			-	<u> </u>	\vdash		-	┝─┤	-
P		in	-	_	0=	A		-	-	 -	7	, N		-			LE LE	7					ES		-		_	-						\vdash
7		34	1	_	K.E.	_	Ė	-		\vdash	-	14	-	-		-	<u> </u>	V -			7	<u> </u>	= =											
					EΩ	R E	51	PC	RT			၁.	11				13	4				0.	1											
_	_	4	_				Ľ	<u> </u>	<u> </u>	<u> </u>		L	_	ļ	_	<u> </u>	<u> </u>	<u></u>		Ļ	<u>L</u>				_		_	<u> </u>				<u> </u>		-
+	+	+	-	_		_	-	┞	-	<u> </u>	<u> </u>	_	<u> </u>	-	-	<u> </u>	-	H	_		<u> </u>	_			L		_	-	-	H		<u> </u>	_	_
+-	+-	+	-		-	-	-	-	-	-	-	-	-		\vdash	-	-	}	-	-			-	-	├	-		<u> </u>		-		-	 	L
+	\dagger	+				-		 		-	L 	-	-		╁	-	-	<u> </u>		-		_			<u> </u>		-	-		-	-			
		1																																
																		L			L.	_			L									
10	MP	4	R	A١	NE	AL	L	<u> </u>	 - -	H	<u>k</u> R	#3	3	:	Ļ	\vdash	-		-		_	-		_		_	_	<u> </u>	-	ļ		<u> </u>	-	-
+	+	-	_	_	-	_	1	-		\vdash	-	-	<u> </u>	-	}_	-	-	├	 -	9"	<u> </u>	/ -		<u> </u>		<u> </u>		-		-		<u> </u>	_	H
+	+	_	20	Q_	50	M	√ a	4	HK	-	ND	EX	K	Alb	FA		-	=	-1	9_	 	É	ON	E	 		-	-	-		_	-	-	H
+	\dagger	1		ΑD	71)	ST	ME	NT	F	OR	A	RE	A/	שנ	RA	71	ON	:																
		1												(Н	5	=	>		6			15			24			48					
4	+	1			L	_	ļ	 	L	_	ļ.,	<u> </u>	<u> </u>		<u> </u>	Ľ	_	_	<u> </u>	<u> </u>	<u> </u>	_		<u> </u>	_	_	_	-	<u> </u>	<u> </u>		<u> </u>		_
+	+	+	4			•	1	ML			%	0	F.	IV.	DE	X		>		Ш	-	1	23	-	1	32	_	Н	42	-		-		<u>: </u>
+	+	+	-(e.	10	S	N P	11	-	-	-	-	-	\vdash	-	-	-	<u> </u>	-	 	-	 		-	<u> </u>		-	-	-		-	 	_
+	+	+			-				<u> </u>			_			\vdash	_		-					-		\vdash			1		\vdash	_	 		
1]																																
\bot		\prod						\Box																				Ĺ						Ľ
4.	\downarrow	4		_	_	<u> </u>		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	1	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	_	_	!	_	_			-	_	<u> </u>		<u> </u>		-
+	+	-		_	-	-		-	-	-	-	+-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	+	-	-	_	-		\vdash
+	+	+		_	-	-	-	\vdash	╁	-	-		-	-	┢	 	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-		H
+	+	+	_	ļ.—			<u> </u>	T	+	1	\vdash				T		T			\vdash										\vdash	_	_	Н	
\rfloor																																		
								\prod																										

) (4 L	DE	.R	P	MC	D	DA														ET 1	١٥.				CKE				DA				
50 B. U	JEC.	TE	१५	HE	D	{	PAR	LA!	٧E	TE	RS	5														WC.		BY		DA.	ਾ ਹ/2	7/	81	
-	 	ب	DE	R	U	N)			Н	15.	R	00	5 R	AΡ	7	:	_																	
$\overline{+}$	_		_		ME	L	Ŀ		t,				*			.3		_							_		-			_			\vdash	-
 	1		`	_							Ç	1		.5	7												_							\exists
#	\dashv										7				-																-			1
$\frac{1}{1}$	1										7	= A ²	3C 16	80 80	o-d	-			ප ප															\exists
$\frac{1}{1}$	-								ŧρ	-	(3	.5			L		3.	18	0.3									_						╣
4	-	\Box						l _	to	_				HR														-			_			-
7		(4, 1	, -	0	A :		AL		L	UR														_				-						7
#					AL	to		-	V	UK	Ľ		_	L_	<u> </u>											+		_	1.00					二
1			ŧr	=		5.5					ا ۲	=	1.	52	4	25						AD	109	STE 	P	∟g	-	2	HK	5_				╣
\pm		AD	<u>ا</u> ن	51	ΞD	L	AG	T	IM	E										_														1
+	-				£	[+		. JE			=	t	7											-									\dashv
7				=						25				/									_		F		_							\exists
_			Τρ		L	_	<u> </u>				1			-		_												-						7
+	_		1 P	_	_	. 4	6	HK	5_		_																<u> </u>	_						\exists
1	_	PΕ	Αĸ	141	5	C	DE	FF	10	1E	<i>N</i> .	-:		_					_															1
$\frac{1}{2}$				_	Ŀ		CP	L_	=	 	∞	-																						\exists
7	-		!	_	-	-	СР		=	0	.6	25	_				_						_	_	-	_		-		-	_	-		\dashv
1	_									F								_													_			7
1			_	_		-			-			-											-		_			-						コ
+	_								-													-						-						\exists
$\frac{1}{4}$																							_					-						\exists
1				_												_											_							\exists
7	4	_			F																						_						\prod	-

в Ді	_DI	ER	f	gn 	D D	DA	M		•		-			-					SHE	ET 1	yo.			CHE	CKE	D B	Y		DA	TE				
BJEC	Ť										_									/				i	APU1		BY		DA		10			
$\frac{\omega}{1}$		EK	SH	EL) T	TA T	KA	ME	ETE	RS	<u> </u>	1	T	<u> </u>	_	_	· · ·		_			-	r	- (<i>NC</i>	느	1		Ľ	2/0	/8	1	!	
-	_	-		-		-	-	-	1.	_	_	-		-	-	-	-	-	\vdash			-	-				-		-			_		I
50	11		14	-	IK	A	110	121	1	OE.	2	KA	11=	3	٤	 	\vdash	-	\vdash		KE.	F :	0	NE	I OF	-	DU	779	-	OIL	ڪ	UK	EΥ	
+		ال		AM	_	+	\vdash	 	\vdash	-		ce	-	\vdash	-	\vdash	-	-	-		-	\vdash	-	-				-	┝	-				
 	20	1	N	AM		\vdash	-	\vdash	-		7	ωF		H	_		\vdash	-					-		\neg			\vdash	\vdash	Н		_		
\vdash		-		┢	┪	\vdash			 		32	<u> </u>	-								-	-		1			-	\vdash	H					
†	\vdash	co	. —	h.,	\vdash						\vdash	Α		5	6		ELI	,,	П				_	 			-						Н	
<u> </u>		AD		ı					1		_	A		Ιţ	•	١.	DŲ	• •																
1		SC	1		00				T		Γ	D		Π		OA	1																	i
T			~			1		T	t		T			7			1																	
		H1	υc	KL	Eυ	Ť	Г				Γ	Α			5	AM	EA	5	Αß	O/k				Г					П					
			Ī	<u> </u>	1			Г	Γ		Γ		-							- T.														
		Lo	υv	11.1	E		Γ		Г			В		1	5	الت	چ,	01	ER															
		1	1	ΙA								В		1		, ,	I		50		011													
				Γ,														1			<u> </u>													
		CA	NR	b D	FY							c		1	51	LT	L	O.A.	М															
		MA										D					OIL															_		
				1																														
							1	NIT	IΑ	L	L	05	5	=	١.	0	ME			J	24	ST	AN	Н	La	عد	=	٥.	15	LI.	s /	18		4
L						<u></u>		L.											\sim			<u> </u>		Ĺ							′			
		L		Ĺ					L																									
BA	Si		5	ρü	<u>:</u>	<u> </u>			_		L	L		_														L						
		_	_	_										L													_							
RE.	E:	19	66	Ł	19	67		SΑ	SE.	M	EΛ	50	RE	ME	M	5 _	:			_		_					L	_						
igspace		_			L			Ľ	ع	51	_			L			_					<u> </u>					_							
L.,	<u> </u>	<u> </u>	_	L	MA	X_	<u> </u>	<u> </u>	2	.3	0			_			L														_		_	
<u> </u>	_			L	M	N.			٥	.8	1_	_		_			<u> </u>		- !			_									_			
<u> </u>				<u> </u>	_	ļ		ļ	 	ļ	L_			_			<u> </u>					<u> </u>		Щ										
<u> </u>		_	L	_	ΑV	E	_			.5	0	<u> </u>		_		<u></u>	FO	R	D	Δ.	=	5.	18		8	AS	E_	FL	Ø	=	7.	3	♦	
1				<u> </u>	\vdash	<u> </u>	_	_		_	-			_			_			_				Щ	_		_		Щ	8	ef	5_	4	— v
	-	<u> </u>		<u> </u>	_	-	-	-	L	<u> </u>				L						_		_							\vdash		_		\square	
-	_		<u> </u>	_	 	1-	-	-		<u> </u>	_	<u> </u>	<u> </u>		_	_	-	_			_	<u> </u>		\vdash			<u> </u>	-	H				\dashv	
-	<u> </u>		_	_	-	-	-		_	_	-		-	ļ		-	-	-				<u> </u>		H	\Box			-	\vdash	Н			\vdash	
		_		\vdash	\vdash	\vdash	-	-	-		-	<u> </u>		<u> </u>			-			-		<u> </u>		Н			-	<u> </u>	Н	Н	-	_	\square	
1	_		-	-	-	-	<u> </u>	-	<u> </u>	_	-	-		<u> </u>			_	_		_		-		H				_	Н				$\vdash \vdash$	
		<u> </u>	-	<u> </u>	-	\vdash	 	\vdash	⊢	_	-	<u> </u>			_		-			_		-		\vdash				-	 	_		_	dash	
	_	<u> </u>	\vdash	\vdash	\vdash	 	_	-	-	<u> </u>	-	<u> </u>		\vdash		<u> </u>	\vdash					-	_	Н			-	-	Н	-	_		\vdash	
-	-	<u> </u>		\vdash	-		-	-	 	_	-	-		\vdash				_				-	-				-	-	\vdash	\vdash	_		\vdash	
			<u> </u>	-	-	_	-	\vdash	-	_	-	-	_	-				<u> </u>	\vdash	_	_	-		\vdash			-	\vdash	\vdash	-	_		H	
Τq	۲	٥	F	₽.	AM	٠:	\vdash	-	_	_	\vdash		_	-			_					_	_	Н	-	_	_	H	-				$\vdash \vdash$	
	_	<u>_</u>		\vdash	-	-	_	_	_	<u> </u>		_	_	ļ-				\vdash	$\vdash \downarrow$	\dashv	-		_	Н			<u> </u>	-	_		\dashv		$\vdash \dashv$	
$\vdash\vdash$						<u>S</u> Į	ED			IR.		2	=		63		-	Н	Н	-	_	-	_	Н	-		-	-	Н	Н	-		\vdash	
	\vdash	ωı	TH	~	5	4	-	-	CR	<u> </u>	Ψ-	┡	=	5	50	-	\vdash	\vdash	Н			\vdash	L	-	\vdash	_	\vdash	H		-			$\vdash \vdash$	
i l	l Ì	[L	l	l _	L	1	<u> </u>	L	1	İ	L		l		1	ı		i l			L :				١.,	l	Ι.	ı	ı			. 1	

TO ALDER POUD DAM .

AUXILIARY SPILLWAY

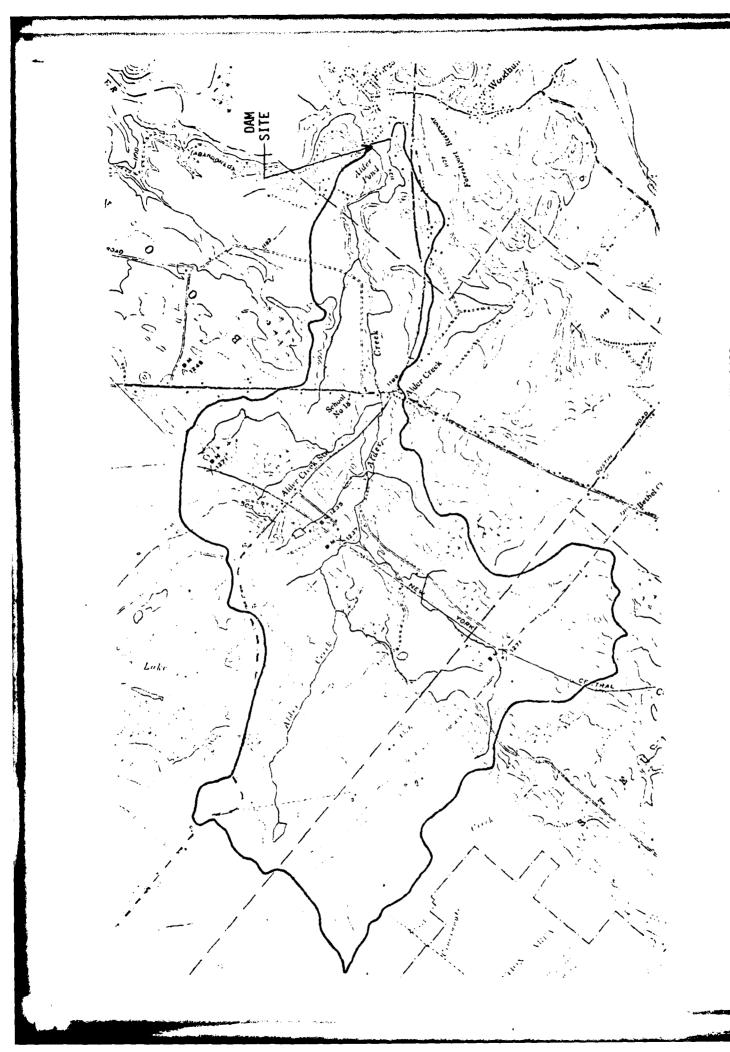
WATER LEVEL @ O.6' ABOVE SPILLCREST @ INSPECTION

BLACK RIVER CANAL

FIELD MEASUREMENTS - 10/80

¥_8

JOB	٩L	DE	Σ_	Ро	ND		DAI	۸													5/	NO.					D B			DAT				
SUB	AU)	T KIL	AR	ب	SP	الا	_w	ķγ	(0	@ AN	VF))	_	1)IS	CH	AR	GE	<u>-</u> S		·	-				WC WC	L	ВҮ		DAT	5/4	/8	31	
		L_			<u> </u>		<u> </u>		_	_	_	3	ζ.		<u> </u>	L.	L.	<u>_</u>			_	 	_	Щ				_	_					_
	WΕ	IR	F	٥	ω	:	<u> </u>	Q	-	<u>c</u>	L	H		<u> </u>	_	_	<u> </u>	<u></u>	01	וס	TI	DИ	:	NO	ڪ	ŢC	PL	00	5	_			<u> </u>	<u> </u>
			_							L	_	L.,			<u> </u>					<u> </u>	_	<u> </u>			Щ		_	_						<u></u>
					Ш		<u> </u>			C		<u>ə.</u>							CR	ES	TE.	D	W	Εı	R				_					_
			ļ						_	1	_	AV	RI	5	L	ω /	H	_			<u> </u>	ļ							<u> </u>					_
					<u> </u>					_	_			<u> </u>		L.,		_		<u> </u>		<u> </u>	L.		`-	3	10	.5						_
		Щ			L					L_	_	1	-	<u>L'</u>	<u> -</u>	2	NK	P	+	لإ) •	1			И	=	3		L	Kρ	=	0.	၀၁	L.
				<u>L</u> .			<u></u>		L	L					L		_	<u></u>		Ľ	<u></u>	<u> </u>			K	=	٥.	ည	L	Ŀ		_		_
							<u> </u>				L				L					L		<u> </u>			o									L
												L	=	10	-5	_	၁/	0.0	4	+	0-	5)	н		11	10	.5	_	0.	48	н			
																	7																	
						Ε	LE	٧.				н					L										Q							
	_																																	
												0				1	О.	5					i			-								
												.5				١	ο.	26									9.	5						
											Ĭ	_			Г	Ė	<u> </u>							П				_	П					
												1				1	ο.	ဂခ								ີລ	<u>6</u> .	3		П				
										┢		İ			T	<u> </u>	·									-9	Ψ.	<u> </u>					\Box	
						_	-				1	.5				_	9.	72			 	1				Δ	7.	2				 		
\dashv					Н	_	-	-			,						<i>J</i> .	70									٠.	0		Н			\vdash	
\dashv	-	Н			\vdash		-	-		_	-	ə			-		0	54		-						_	71							
\dashv			_	\vdash	Н	_	 				-	٧			\vdash	_	9.	54	-	\vdash	 	-		-		_	11	_						
\vdash			-		-		-		-	┢	├─	_					<u> </u>		-	-		 	H	-	-		- 23	<u> </u>	-	-			H	-
\dashv		H		-				\vdash		H	⊢	3				-	9.	06	-			-	-				90		_	Н				_
70	ρ	oF.			-	_	 		_	-	<u> </u>	_	_		-		_	_	_	\vdash	_		-		-		~7	<u> </u>	-				-	-
ТО	PIE	RE		→	\vdash		-	-			3	е.					8. n	<u>60</u>				-					77				റ		\vdash	
\dashv	-	_			H		<u> </u>	-	-	-		-		Н-						ᆫ		├	1 1	Q	-		4_				77	АТО	_	
		_	_	-	-	_	├ ─	\vdash	_	7	<u> </u>	4		0	۵	5			ျခ	4.	4	-	Н	0.	7_		+-		_		17	7.	7	-
		\vdash		\vdash	H	_	-			\vdash	<u> </u>	-		-	-		<u> </u>			<u> </u>	 			Н	_	-	+	-		Н	_			<u> </u>
_			_	-	┝╌┤	-	-	-				.5	_	0	.5	5_			3	4.	4	_	3	7.	8	_	+			Щ	∞	4.	8	<u> </u>
			_	-	├			-	<u> </u>	9					<u> </u>	_	<u> </u>			<u> </u>				Щ	ļ <u>.</u>	_	\vdash	L.,		Щ	_		 	_
_				-			<u> </u>	<u> </u>		1		5		١	.0	5_			5	6 .	6	<u> </u>	8	0			+				25	7	\vdash	_
_		_			Н					7		_			L.			_			_	_	Щ		_		4		_		_		\vdash	_
_				_			_	_		\sqcup	<u> </u>	6		۵	٥.	5_		_	ွ	۷.	6	-	3ı	8	Щ		4			Щ	39	5		_
_		Щ			Щ		_			\sqcup	_	<u> </u>		Щ	L.	L_	ļ			_	_			Щ			\perp	_						_
		Щ					<u> </u>			\perp	6	.5		2	.5	5			၁	<u>(۵.</u>	6	_	30	3			\perp			Ш	48	0	<u> </u>	_
		Ц	Ш	Ц				Ш		Ц					L					Ш				Ш			Y	l 		Ш				
ТО	P 0	AM	_	>	Ш			$oxed{oxed}$		1	-6	.7		ခ	.7	5			٦	۵.	6		33	9		_1	77				51	6		
					Ш					Ц							L	_		oxdot														
			Ĺ.,				L	L									_																	


BJEC BJEC	DE	R	P	DNC	0	DA	M													6/	NO.			CHE					DAT				_
BUEC AUS	ζι L	<u>IA</u>	RY		5P1	LL	ω	·γ	_	7 —	T	_		_	Di	ક્ટ	НА	RG	ES	, >	,			COM	WC		BY		DAT	3/.	4/	81	-
WE	1R	F	LC	S	:		Q	=	C	Lì	17.						c	ОИ	DΙ	Ţle	27	:	SĮ	OP.	2	GS		0	10	ρ	ρι	१८	7
					\vdash	_		-	c	_	 	<u> </u>	ES		w/	#			5	нА	RP	- C	8F	ST	F C	Ė	ω)E	IR	-		-		Ĺ
	_										ŀ			L	7 95																		_
Ε	LE	٧.				C	ee H	ÞŢ			Н	† 		7/	-		С				L					Q							
				-		3	9	5	-		0		_	_	_		3	. ၁	_	2	4.	4			-		_			Τ	оρ	P	,
							4				.0	=			01			ો ભ			A					.B			Н		\Box		_
													_								V												-
						4	.5			0	.5	5		0.	14		3	.၁		<u> </u>	4.	4			31	-8							L
							5			١	.0	5		0.	26		3	.3		ລ	′ુ. •	G	-		94				\vdash			_	
							6			э	.0	5		٥.	52		3	.4							26	5							-
						6	.5			ə	.5	5		0.	64		3	.4							36	ප							
		_					.7				.7			L	70		3			٠	V	\ 			42				Н	_	٥P	9	
						G	. /			ے	-1	3		<u>.</u>	70		٤	.4			۰.	٠.			40	4						_	_
										_				\vdash	-																		L
				-																													
		_						-																									
				_					-			-		_															Н		\vdash	_	
																													П				-
																																	_
H				\vdash					_			-		\vdash	-														Н				
														_															\square				Ē
\vdash	_								-				-	\vdash	-							H				-		-	H			\dashv	
																																	ŀ
																																	ŀ
ΙŢ			_	_			_		1								"				1										ΙĪ		ĺ

106		DI			Por	10		DA	M											SHE	7/				CHE	CK	D B	Y		OA	TE			
\$U8	UEC	Ť	_																		1				CO					DA				
	BL	A	K		517	ER		A	JAI	-	-	J	15	CH	AR	GE						_		,		ω	CL			-	<u>3/</u>	4/3	31	
					_					-	_				-	-	_					-		-	_	1		_	-	 			-	
	_				_	-			-	├─	-			_	-	-			-		RE	F:	-	HY	DR TH	7	EX	<u>-</u>	172	BL	URE		 i	
-	E 5	17	MA	75	2:	0	-		03	<u>-</u> -					-	-		-	-		-	-	-	11	맫	ٿ	٠.	-	F	18	DKE	ب		_
7	7		_	\vdash	\vdash	3					01	89	-	7	1	/10	MI	LE	57	-	-	-		-	1	-		-						
			A	E.	80	177	M	Ī			~		oʻ	7	7				7															
					I	DΞ		٥٦			72		: 1																		-			
				L	_					<u>_</u>	-		2/2		1/5					_	_	_		_	_	_	<u> </u>	_	ļ	_	_		_	
4	_		_		_	ΛE	<u>L</u>	=	=		86	<u>-</u> .8	3 /3	5	2				_	Q	=	VA				}	_	_		 _	_		_	
4	_		_		_			_		n				2/ 3	-	-				-	-	 	-	-		 -	-	-	-	├-	-			
-		-		-	-	-	X	=	0	Ш	84	58	R	-	-	-		-	-	-	_	-	-	-	-	}	-	-	}	}-	}-		-	
	_	-	-	-	-	-	-			-	-	T.	9	-	-	-	10	<u> </u>		}		10	fs		-	-	-	-	-	+	-		\dashv	
-		2	PΤ	11	-		-	R	-	-	-	7	7	4	1	1	4	2 F A	17		<u> </u>	16	Q	1	1	<u> </u>	<u> </u>	-	1	T	 		7	
Ì		700	1	17		-	-		-	 			_¥_		1			_			-	-	- W	-	1	-	-			T	1		寸	
1		0	.5			0	. 4	85				0.	11.	4			15	۔ ۵	6			1	.7											
			1			0	و.	4		L_		0.	17	7_		_	31	٥.	0	L		5	.5	<u>_</u>	L	_			_	L	<u> </u>		}	
_			_	_	_	_	_	_	_	L.				L	<u> </u>					<u> </u>			_	_	<u> </u> _	_		_	 	 	-			
-	_		.5	-	_	1	.3	75	_	<u> </u>	_	0.	ခခ	8	-	_	47	<u>.ع</u>	6	<u> </u> _		10	.8	-	 	-	-	-	-	╀	-	_	_	
-			-	-	-		-	_	-	 				_	├-				_		-		-	-	-	-	-	-	-	-	-	-	_	
\dashv		-	2	-	-		-7	9	-	\vdash	-	0.	<u>37</u>	روا	-	 	64	.0	0_	┝╌		111	.4	-	╁╴	-	-	-	-	+-	-	-		 -
ᅱ		-	3	-	-	1	.5	7		\vdash	-	0.	21		-	-	99	~		-	-	34	.a		┢	 	-	-	-	+	-			
7		-	2	-	-	0	٠	1		\vdash		v.	2	(0		-	رو		<u> </u>	<u> </u>	-	حيا	. 2	-	\vdash			1			 			
		3	.9	5		3	2	55				٥.	40	5		ī	34	-1	1			5	4											
			4			3	٦.	9				O.	40	8			36	٥.	0	L		5	5			_		_	1	L	<u> </u>			·
		_	<u> </u>	_	_		L			_	_		_		L	_	_		ļ			-	_	ļ	_	ļ	_	 	-	 _		_	اـــا	
_		4	.5	-		3	6	35	_		_	0.	43	6	-	1	55	-2	6	<u> </u> -		6	7_	-	-	-	-	-	-	-	-			
		-	_			-	-	-	-	-	-			-	-	+-		-	_	-	-	-	-	-	-	+-	-	+	+	-	-	-	 	
-{			5	-	+-	3	و	0	-	-	-	<u>o.</u>	46	لو	-	+	75	-0	0	 	-	18	0	-	+	+	-	-	+-	+	+-	-		
			6	-	-	A	6	5	-	-	1	0,	51	-	-	<u>ا</u>	160			 -	-	11		-	1	1	-	1	+-	†	+-			
-			8	-	1	-	פנ			<u> </u>	1	٠	1	_	\vdash	3	340		-	<u> </u>	-	 '-	_		T			1	-	T			\neg	
_		6	.5			4	.9	0				٥.	53	3		a	37	۵.	6			اها	6		Γ									
		6	.7			5	.0	2		L		O.	54	1	L	2	45	و.	0			13	3			_			1	1	_			
				_	_		_		_	<u> </u>					<u> </u> _			<u></u>	<u> </u>	_		-	_	_	ļ	_		_	<u> </u>	L	<u> </u>	_	<u> </u>	
4	_		-	_	_		_	-	-	 	_			_	 -	-	-	-	_	 	-	-	-	-	├	-	-	 	┼-	╀	┼	-		-
4		_		-	-	_	-	-	-	-	-			_	-	-	-		-	-	-	-	-	-	-	-	-	-	\vdash	┼-	+-	-		
			-	-	-		-	-	-	-	-		-	-	 	+	-	-	-	-	-	┼	-	-	+	-	-	+-	+	+	-	-		
		-	-	-	-	-	-	-		-	-	-	-	-	 -	-	-	-	-	-	1	+	-	\vdash	+	1	-	+	+	+	-	-	-	-
4		-	-	-	-		-	-	-	 -	-	-	-	-	1	1	-	-	-	-	 -	-		1	+	1	1	+	+	+	1	-		<u> </u>

BOL A L I		R	P	ر الا	ID	 }) 	Μ											SHE	8/	o.		1	ECK				DAI				
SUBJECT SUP	MA	1A	وب	:		Į	215	C	ΗAI	RG	E	5		· <u> </u>					-				CC	ωC	TED	вч	,	DAT	3/4	4/8	31	_
			1	1															_	1	1	\perp	\pm	\perp								_
+	+	+	+	-	-	-				4	-						+	\dashv		+		+	+	+	-	-	-	\sqcup			-	
	4	-	7	4	-												_	4	4	7	1	7	1	-		-	-				\dashv	
	\dashv	1	#																	\downarrow		\downarrow	丰								\rightrightarrows	
$\pm \pm$	_	\exists	1	\exists								_					+	\exists		$\frac{1}{2}$	\pm	\perp	\pm								\exists	_
+- ,	डिग्रे		+	4	+	_				-	_	_			\dashv		+	\dashv	\dashv	-+	+	+	+	-	-	-	_	-	_	\dashv	\dashv	_
	Ť	8	7		0		CO		5.5		Ξ		17	_	34		54	4	50	-	৪		1	ñ		4		57			\dashv	_
	Ø	2	1						41						(2)		47	1	u,	_		#	1	375	-	494		5			\dashv	_
++	TOTAL	H	7								-									_			\pm									_
++	2	265	T T	-	0	_	5		- 5		80		88		12		31	+	33	-	0770	1	70	100 100 100 100 100 100 100 100 100 100	-	وح		49		\dashv	-	_
		7	7				_		6)			_			1		G	\dashv	0	-	G	-		n)		9		9				_
17			7																	1		1	1								\exists	_
			2		\sharp			<u>=</u>								>	0	1		_	33	1	*	265		<u>مي</u>		424		\dashv		_
	1055		1	-																+			-					7				
	5100	\prod	-	-			S									_			-	-		+	+	-							-	_
	_		5	7	\parallel	_	9.		28		47		171		193		177	1	178	_	500	1	100	395		8		516		_	\dashv	_
			1																				1									_
		4	73						5								_			1	\downarrow	\pm	\pm									_
++	+	CAMAL	FLOWS	-	4	-	C		2	-	=		17		3	-	R	+	33	+	19	- 6	8	9	-	28		133			-	_
#	1		7	+													+	4	4		_		+			F				\dashv		_
++	3		_	#			10				70						95	_	_	+		+	‡			10			-			-
	ELE	8	7	\perp	9		0.5				1.5		<u>د</u>		3		<u>E</u>	1	4	\exists	4.5	+	1	9		6.5		6.7			_	_
++	+	+	+	\dashv	\dashv	-			$\mid + \mid$		-					-	\dashv	\dashv	-	+	+	+	+	\vdash	-		_	H			-	_
+	4	4	7	7	7	_			П	_	\dashv						+	7	_	+		+	Ŧ	-				H		H	\dashv	
#	\downarrow	\downarrow	\downarrow	\dashv								_					_	\exists	\downarrow	1	\pm	1	#	\downarrow								
																		\Box					1	1								L

KE ZOX 20 TO THE INCH 46 1240

- d		=====			= =		===:	:	7117				:::1	: . : :		=::[- : : :	: ::::		·	
98 2																							
3 4		::: <u> </u>			T. 11				= 1		- 1 - 1				. : :	=			! 				
2 ×	 - ::			<u></u>				:::::						1111					11.1		=====		<u> </u>
6								 								-==							
7							=:	 ===						E: :	7								
4 3									===						==:		-=-		===		-==-		
										စ္က	====												
Q TV	===	= :	_	<u> </u>	<u> </u>						===	==								===		-	
	=			<u> </u>																	===		
DER P							\equiv	==		Q				-									
2 8					===			= :		8 +	===												
4	 					====								=						=	===		
*																	==			=			
<u> </u>																	-			\equiv			
					=: ==			 						==									
	===										===					\equiv				\equiv			
					===						===												
	===							===				် ရ											
				===								5											
								==	===			٤											
					 	==	===				-	5	2	F		===				=			
											===	3	200	о О				==					
					==					1 35				μ									
								===		_ _		4											
								=				ţ.											
						\equiv							===	-									
								\equiv															
								=						==									
						==		=															
								==						==									
					===					:::: C						===							
							\geq			150													
														==									
										+(0													
							==																
										0	=												
				3																			
			===																				

DRAINAGE AREA MAP - ALDER POND DAM: NY-1489

***	AFW YURK STATE DEPT OF ENVIRONMENT	FLCCC PROTECTION BU
\$	- usī	

中国的 (1972) 1973年,	****** FACK:	# 5	****						:	****	****	
AN STRETY VENSION AND 197 197 LAST ACUIFICATION 26 FEN 79 199 FUNE FEL POP 75	rick Johnson Prick State	361 V 6 FF: 711 PPP	1976 79 1 75						2 2 4 C	NEW YURK STATE DEPT OF ELVIRON-E FLOOD PROTECTION	: STATE EPVIRON:ENTAL CENSERVATION GTECTION: BUKEAL	
· · · · · · · · · · · · · · · · · · ·	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	#0##0# NY=14	i.	DEP PON	20 C			_	* 2	· · · · · · · · · · · · · · · · · · ·	中华中央中央中央中央中央市场中央市场市场市场市场市场市场市场市场市场市场市场市场市场	
7 €	∢ <			DFC 127A-4417 BLACK CYSCOT WATERBAYS	MATERIA	CK ALDER	R CREEK		CAE IDA CO	A COURTY		
4 N	3 (2)	ê a	~		0	٠ ا	o	″ ບ	A TOER LF	c	ပ	
49	7	~	•									
7	7	0.17	0.15	0,50								
æ	×	v	NASIA									
ď	ž		ä	ILFLEK HYDROGRAPH	RGGRAPH	CAM						
10	I	7	-	5.18	_					-		
11	•		19	111	123	132	142			•		
12	-							1,0	0. 15			
£.	¥	6,46	0,625					;				
14	×	ىد	23	~	•							
15	×	~	BAR		•			-				
lo	ž		RC	RCLTED CUTFLOW	•	CAM CANAL	IL FLOW ALE		STOPPOGS	1 		
17	>				-			•))) 1			
3 2	۲,	-						7	7			
19	74	ن	~	M	3,95	4	4.5	ľ	· • •	6,5	6.7	
50	ζ,	U	83	157	231	233	272	337	505	609	699	
7.7	5.3	ပ	0.01	5 0	61,1	91.4			ı	}		
22	\$	ပ	0.0	1.0	6.7	7.6						
23	y ,	U		•								
54	••	£ . 3	2,63	1.5	0.5.7							
25	×	~	DUSTRI					~				
26	χ,		A00	NSTREAM	CHAPITEL	DCWNSTREAM CHARREL POUTING						
27	>				~	~						
28	۲٦											
29	76.	50.0	0.04	0.04	C	21	500	90.0				
30	۲۲	10	21	30	1	95	~	\$ 5	c	125	IJ	
31	77	175		190	1	213	21			;	,•	
32	x	33										

NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION FLOND PROTECTION CUREAL **的复数的非常有的的现在分词的现在分词的现在分词的现在分词的现在分词的** 14010 UNIT HYDFOCRAPH 24 END-OF-PERIOD ORDINATES, LAG* 8.47 FCLRS, CP# C.62 VAL# 1.00 ac. 164. 126. 97. LOCAL ISTAGE ALS"X STRICE POOR OFFICIENTS FROM GIVEN SHYDERICP AND THIRE TOWN SAND RM 3.87 INTERVALS BLACK RIVER BASIN CREIPA CCLMIV SRYCER UH ISAKE INAME **** 157.05 0 R72 C. IPLT C JPRI STRTL 1.00 MULTI-PLAN AVALYSES TO BE PEFFORMED RPLACE 1 MRTIC= 4 LRTIC= 1 .10 . RAT 15 PRFCIP DATA R12 R24 R48 123,00 132,00 142,00 TRACE SUB-AREA KUNDEF CEMPUTATION JPLT 8110K 1.00 UNIT HYDROGRAPH DATA ALEER POND DAM DEC 1274-4417 ELACK -- ALDER CREEK NYSPOT -- WATERLAYS JCB SPECIFICATION 1HR IMIN HYDRGGRAPH CATA TRSOA TRSPC 5.13 C. RECESSION DATA LROPT CP = 0 . 63 **** INFLCE HYDROGRAFH -- DAN ICOMP IECTN ITAPE C LOSS PATA EFAIN STRKS F 0 8.46 StiAP G. 225. 27. 2. PHS R6 19,00 111,00 1649 JOPER R.T.IOL 1.00 0.10 **经存货的 医多种性性性** TAREA 5.18 34. TRSPC CURPUTED BY THE PROCREM IS 0.800 C.17 1 1 ž ST HAY THE FILE ENITE APP 79 LAST MOUTHICATION 26 FIR 79 1.Y-1489 STAKR INVOC *** LAUPT RUT DATE G3/10/61

IJ

J

8

::

=

9

9

\$

0

0

9

0

0

0

0

θ

a

6079 6 748 6 574 6

EXCS . LESS

0000

PER IC:

AD.01 1.03 1.03 1.03

LOSS 0.01 0.01 0.05

EXCS C. C.

70003 10003 10003

MC ...

PERICE

END-OF-PERIOG FLAW

CCMP 3

G

								¢.70	09.549		
								6.30	00.000		
•	64 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2 C C C C C C C C C C C C C C C C C C C		**	0 T D 4 I		00.0	505,00		
	129 621 621 50 4		17. 257. 1243. 100. 8.		*	ISTAGE I	ISPRAT -1	5.00	7.no		٠,
75.71 656. 1055.	20.00 40.00 60.0044	14361. 14361. 467. 8.61. 218.65 237.	11. 59. 1610. 127. 9.	L VELL'E 28761. 514. 17.22 437.50 4754.	* *	INAME 1	STCKA-1.		337		FA FXPI
:U * *	7.000 U V V V V V V V V V V V V V V V V V	1CTA	717.4 2065. 162. 8.	TCTA	***	STCPL763	, 15k	4.50	272,00		L CARE
78.20 10.50 10.50	PLAN 12- 15- 15- 104- 4-	72-HTLF 357. 11: 8.55 217.22 2361: 2913.	PLAN 15 R 8. 26. 702. 208. 8.	72-HCLF 794- 72- 17-10 434-44 4723- 5825-		AND ALL JPLT C 10PT	, ×	00.4	33.00		אר נננ
2.74 59.52 756. 932.	FCR	24-HCLR 105E. 3C. 7.60 193.10 2099. 2099.	FCR 2	24-HOUR 2117. 215.20. 15.20. 386.20. 4196.	-	CAMAL FLOW AN ITAPE J C C CTING DATA I ISAME I ISAME I I	ž 0		7	51.	10. IVM FIFVE
25.42 31.4 31.6 368.	77 STA BASI:	6-HFUS 1761. 50. 3.16 80.33 873.	AT STA EASIN 21. 3394. 267.	5525. 5525. 6.00. 160.67 1747.	#	DAN CAMAL LECTH ITA EQUITING RES ISY	1 997	3.95	231,00	61.	7. Curin FX
	HYDROGRAPH () 4 () 1 (108.	* * *	FLGe T ICUMP 1 AVG	L.STGL	3.00	57.00		1. SPWID C
ν ≤ ⊢ Σ - = - = -	FYD 15. 16.17. 222. 17.	សសសភ្គម សសសភ្គម	HYDRUGRAPH B. 25 36. 25 36. 25 444. 3825 33. 14	2	**	KOUTEE BUT 15TAG DAK 5 CLOSS	nsTPs	0	1 0	•	1, CREL SP
11 CAFS 11s AC+1 TFDLS CC M	14. 17. 247. 24.	CFS CMS INCKES AR ACTET	2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CFS CFS TECHES MM ACAPT TECHS CU M	•	<i></i>	·	2.60	8 H • 10	• •	•
	3457.0 3457.0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		22. 1714. 742. 62.		***			• c	ڹ	•	C
	. . 25 CN		ς ι		*			STAGE	FLCk	CLPACITY	ELEVATION

***				2002 2003 2003 2003		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	
•				, , , , , , , , , , , , , , , , , , ,	C - Q C C C	004000 1170400					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n
				9000 9000 9000 9000	004400	042700		4686.4 1386. 1386. 50.00 60.00 60.00			22 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	004400
CL CANED	. 586 550	FATIC 1	CREINATES	40 A W W W W W W W W W W W W W W W W W W	005400	~~~~°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		TCTAL	RATIC 2	CREINATES	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22,4400
C. C. C.	DATA LXPD 1.5	PLAN 1.	EYDROCRAPI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000	010000		72-HCL 135- 4 2.9 1 73-6 1 602	DAMS PLAN 13	IOD HYDROGRAPH	N 0 W W W O O	00,000
6.824 EL. 6.	6AM CCICE 7 2.6	DI DAM	-664100 +4	001FLOs 505. 65.	STDRAGE 2. 59. 8. 0.	STAGE 0.1 0.0 0.0 0.0		24-HCC 35-2-15-4-15-4-15-4-15-4-15-4-15-4-15-4-1		-PEX	047FLON 3. 525. 625.	STORAGE 0, 0, 0, 9, 0,
;;;	TCPE 6.	STATIO	ENC-OF	0 64.4.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	က် ကို မိုလိုင်းတိ တွင် မိုလိုင်းတိ	0 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s	6-HCUR 598. 177. 27.26. 296.6	STATION	END-04	6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000
0.000	•			20 20 20 20 20 20 20 20 20 20 20 20 20 2	ប៉ូប៉ូខិតិ ប៉ូប៉ូខិតិ ពិភាព		48.C0 HOUR	PEAK 647. 18.			9. 7. 7. 109. 10.	ပီပီပို့ရှိလို ပီပီပို့ရှိလို
0 CKE				6.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4		50 N N S S	7. AT TIME	CFS CMS INCHES MM AC+FT TFDLS CU M			ころ まり しょう こう	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* * * * * * * * * * * * * * * * * * * *				3. 7. 160. 157. 10.	00440C		15 64				3. 177. 166. 15.	00 NN 00 NN 00 NN
A STATE OF THE PROPERTY OF THE							PEAK PUTFLO.					

i Sim m Si Si	SUTFLO. IS				4 1 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.4	ับ ับ อ ัก ัส ับ	OUTFLG 15				114.
~~~~	59				« ហុ ក្សា ហុ <b>៤</b>	0 - 4 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N4640N	203				• • • • 5
	7. AT TIME	CFS CNS IP.CHES MM AC-FT TF DLS CU M			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 ~ 4 0 0	SC. AT TIME	CFS CMS INCHES MM ACLFI TYGLS GU M			2 4 8 5
0000 0000 0000	48.00 HOUR	PFAK 697.			8. 15. 15. 25. 25. 8.	00 2 7 00	001-400 044m4n	46.60 HOUR	PEAK 2030. 57.			16. 32. 3719.
0.00	s,	6-HFUS 632. 18. 1.14. 28.34. 314.	STATION	END-OF-	0.030. 212. 0.000.		0 7000	S	6-HCUR 1761. 3-16. 80.30 873.	STATION	END-OF-	20.03740.03
0000		24-HOUR 375. 2.69. 68.44 744.	DAM	PESIDO HY	GUTFLON 3. 14. 166. 11.	STCRAGE 0. 0. 64. 25.	STAGE 0.2 0.2 7.4 7.6 9.1		24-HOUR 1051. 36. 7.55 191.83 2005.	DAM	PERIOD FY	CUTFLCW 16. 21. 21.
0.00		72-HCLR 143. 3.08 78.21 850. 1049.	PLAN 1, RA	DRIGRAPH CR	145 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		000000		72-FCLP 357. 11. 8.55 217-22 2361. 2513.	PLAN 1, PA	DRUGRAPH CR	0. 20. 664.
74400 7440		TETAL V	ATIC 3	CINATES	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	004400	N40MMM		TCTAL	ATIC 4	FINATES	16.7.
42400 42400		VELLUE 5175. 147. 147. 76.73 856.			m 6.0 m m 6.0 m m 0.0	0-400	289923		VCLLWE 143E2. 4C7. 6.61 2337. 2532.			3. 1562.
20000 20000					603 603 8		01010 					24. 132. 1307.
46.00					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 W W W C C	00 m m m c c		•			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

()

ĺ												7
											17.70	57456.29 216297.82
• • • نه نه س		400011									15.45	46355.83 156753.51
25. 5 10 5	0000 0000 0000 0000	00.00 00.00 00.00 00.00		***		I AUTO O					13.24	36241,30 177991,39
			744 • • • • • • • • • • • • • • • • • •	*		E ISTAGE 1 0 LSTR 0	A ISPRAT			•	11,05	7147.64
155. 10. 10.		200-400 484444	1.CTAL VCL 287 8 17 17 437 437 58	**		JPRT INAME C. 1 1PPP C. C. 1	TSK STCRA			.25.c0 c	8.89 31.74	38.67 2 47.68 16
2.5. 	50 Km 60 Km	0.00	72-HCLR 754. 72. 17.10 434.40 4722. 5025.	Ť	וייפ	1001 1001	× .			0. 1	6.76 9.33	3.50 151 9.17 1425
	STURAGE 3. 75. 41.	STAGE C.54 6.2 6.2 0.2	24-HULR 2114. 215. 15.19 365.75 4194.	***	GRAPH REUTING	FG ITAPE OTING DATA ISAME	AMSKK 0.		SEL C.06660	-ff: •60 95.00 •60	66 95 · 2	2 1229 2 12640
36. 6.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07~NN0~	6-HCUP 3516. 160.31 160.39 1744. 2151.	\$	HYDEGGR	EL ROUTI IECCN 0 RD RES	0 0 0 0		PLA.TH 500.	7, ELEV- 60 21	24.	6725,3 110556,9
	3 4 5 6 6 9 9	21.0000.	46.00 HGURS PEAK 3740. 106.	***		DOWFSTREAM CHANNI ISTAG ICONP DASTRM I S CLOSS AVG	RSTPS NSTDU		ELNYT ELMAX	-STAJELEVJST 1.00 95. 1.00 210.	2.58 24.59	2611.41
67. 6.		02221	CFS CAS INCRES INCRES ACAFT	<i>t</i> e		004F	22	941 941	CE(3) EL	21.00 30.00 1.00 150.00	0.54	237.65 63.95.95
18. 10.	6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	\$5.40 \$5.40 \$5.40 \$5.40	1S 374C.	<b>电影电影电影电影电影电影电影</b>				CHAPPEL PELTING	0.6400	PSS SECTION CO 10.00 21.00 125.00 1.00	25.61	09452466
1			מידבר פעדהברי. יי					PORMAL DEPT- (	00400	CP 55	STORAGE	CUTFLUN

Ð

Э

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

Ð

O

a

6

ຍ

and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	374C. AT THE 44.00 HOURS
	PEAK CUIFLU- 15

							17.70	57454.29	5.95	57454.29 216297.82			
							15.45	46359.83	8 . 8 4 17 . 8 5	46359.83 156753.51		₩ ₩₩ ₹ ₩ ₩	••
	**************************************		E 14UTG C C C C C C C C C C C C C C C C C C C	⊢o			13.24	36241,30	7.74	36241,30		245. 245. 245. 16. 1.	 
VOLLNE 26761. 17.826. 437.30 4754. 5864.			INAFE ISTAGE	STERA ISPRAT		ငံ	11.05	27147.64	6,63	27147.64 16C019.27		10. 30.6. 22. 20.	<b>.</b>
-HCLR TCTAL 754. 724. 17.16. 17.16. 14.90. 47.22. 5625.	**************************************		14 6 6 7 4 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6	TSK C.		125,00	E.89	15138,67	5,53 16,58	19138.67 142647.88	T1C 1	89 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	::
4-HOLR 72-H 2114, 7 66, 7 15, 19 365, 75 434 4194, 47	**	REUTING	APE JPLT 0 0 0 0 0 0 1 0 0 1 0 0	APSKK O. X	7 E L	95.00 0.	6.76	12293.80 126469.17	4.42	12293.80 126469.17	CHSTAN, PLAN 1, RT	LD% 0.	c c
6-HCUR 24- 150- 2 100-34 1744- 4 2151- 5	计会计分类的	HYDKGCRAPH RCUTI:16	L REUTING 1 O O O O PECTING FEUTING I NES 1 ISA	LAG O.		20. C.06 EVFTC 1.00 21.00		6725.32 110956.92	3,32	6725.32 110956.92		605. 605. 65.	STOR 0.
PEAK 6 3740.	***		CHARNE ICCEP 1 AVG 0.	S NSTDL	ELMAX	21.0 50 TAJELEVASTAJELE 1.00 95.00	2,58	2611,41 96267,14	2.21 13.26	2611.41 96267.14	STATICN	3. 0. 4. 4. 7. 7. 7. 7. 7. 3. 5. 3. 1. 2. 2.	• • •
CFS COS TYCAPS AC—PT TFUS CU M	**		DOWN STREAM 15140 DP.5TKR CLOSS CLOSS 0. 0.	HSTPS 1	TING  (R(3) ELNVT	C. C.E.S.==.S.	0.54	357,65 £2430,49	1,11	237.63 62436.49		25 5 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	<b>安全公司的</b>				13. 15. FCI	.60 0.6406 .55 SECTION C. 10.00 21.01	19.97	0 69492.ř8	11.65	0 69492.48		5. 155. 157. 10.	• • • • ·
					NGRYAL DEPT- C-	0.64 C.R.C.	STGAAGE	CUTFLCW	STAGE	FLOR			

**©** 

57456.29 216297.82										
46355.63			300300	0 N F 0 U U				1000 1000 1000 1000 1000 1000 1000 100		UNF
36241,36		26 26 26 26 26 26 26 26 26 26 26 26 26 2	000000	000000				33. 265. 22. 2. 2.	000000	
27147.54		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ခံခံစ်က်လိုင်	949499	4651. 4651. 128. 2.93. 74.30 667.			921 122 14.		o
19138.67 42647.86	~	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00-000	7 TCTAL		~		00.000	00-
293,40	THE LO PETIC	64 98 98 98 98 98	064005	004000	72 195 195 196 196 196 196 196 196 196 196 196 196	<i>:</i>	IN 1. RTIC	040404	00.000	001
25,32 122 156,52 1264	UNSTAND PLAN	04. 66.3. 66.3. 1. 1. 1.	STC8	STAGE 0.0 0.2 0.0 0.0	24-HJCR 354- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016- 2016-	STURAGE .	ORSTARA PLAN	0047FL 30 50 64 64 20	00.00000000000000000000000000000000000	STACE C.O
1 6725. 4 110956	STATICE U	0. 647. 779. 8 4.	00×636	00mm00 00m200	6-HPUx 596. 1.07 27.27 296. 366.	MAXINUM ST	STATION	697. 82.	004600	0 o e -
2611.41 96207.14	•	40 40 40 40 40 40 40 40 40 40 40 40 40 4	* * * * * * * * * * * * * * * * * * *	004000	РЕ4К 647. 18.			3. 619. 103. 10.	* * * * * * * * * * * * * * * * * * *	00 h
337.63 62438.49		61 M 7 W W W W 7 W W W W W	********	204073 04403	CPS CMS INCHES PY AC-FT T+CLS CU H		1.3		30,400	;- ;;-
0.69499		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ccocca	000000			15	6. 165. 15.	****** ©©©©©	004
FLO).							MAXIRUM STAGE			
				•			K.A.X			

		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		494.4C 474.4C 5825.	2114. 60. 15.19 355.75 4193.	3515. 100. 160.35 1743. 2150.	3747.	CAS CAS CAS CAS CAS CAS TFOX CAS TFOX CAS CAS CAS CAS CAS CAS CAS CAS CAS CAS	
		VC11"E 28769.	TCTAL	72-HCLR 754.	24-POLR 2114.	6-HCUR 3515.		CFS	
0.0	0.0	C*3	ິບ	0.0	0.0		0.3	0.0	0.0
	0	, 5	, ,	0.0	0		c.1	y .F.	, N
~ (	9.1	۲۰۰	ງ <b>7</b>	2.2	2.4		2.5	2.2	 
7.0	1.00	0.0	ن بر ن ن	0.0 C.1	0.1 0.1	0.0	0.1 0.1	 	0:1
J J	ပ်င်	÷ •			 		60	 	 
- 0	-0	% 0 8	ر د .	in 0	~ c			m -	~-
ٽ ٽ	ပင်	<b>.</b> .			1 - 0 0		د د		• c

The second second

. • MAXIMUN STORAGE .

> 2,5 MAXIMUR STAGE IS

***

***

***

***

****

FEAN TEUR FOL STITKLUE VENU UT FERJEUR SOUTHANT THEFOLITEER FERFERS PER SECUND) AREA IN SOURE MILES (SOUAKE MILES)				
FLCAS IN CUBIC FEET PER SECCHO (CUBIC PERFS) AREA IN SQUARE MILES (SQUARE MILES)	AREA PLAN RATIO 1 RATIC 2 RATIOS APPLIFC TC FLOWS 0.17 0.18 0.50 1.CC	1913, 2825, 54,16)( 108,32)(	2030, 374C, 57,47)( 105,89)(	2623. 3747. 57.29)( 106.11)(
CSQUAKE K	RATIUS APP RATIU 3 0.50	1913.		
SOFF PER SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF T	RATIC 2 0.18	650, 653, 16,41)( 19,53)(	647, 697, 18,53)( 19,74)(	697.
CUBIC FEE PEA IN SOU	RATIO 1 0.17	650. 16.41)(	647, 18,53)(	1 647, 697, ( 18,33)( 19,74)(
FLCAS IN	PLAN	7	 	<b>1</b>
	AREA	5.18	DAM 5.18 (C.12F 25)	DHSTRM 5.18
: :	STATION	BASIN	DAM C	DNSTRM (
_	OPERATION	HYDROGRAPH AT	ROUTED TO	ROJTED TO

ALDER POND DAM NY-1489

[NO BREACH]

# SUPPARY OF DAM SAFETY ANALYSIS

ALDER POND DAM NY-1489 NO BREACH	-T	
	74 714 716 716 716 8	
7CP OF DAM 6.70 61.	11ME CF MAX OUTFLOW FIGURS 48.00 48.00 48.00	
	CVFF TCP CVFF TCP FCURS C. 2.00 16.00 22.00	T4444 FD#### FD#### FD00000
SPILLMAY CREST	MAXIFLE C CFS C 647. 697. 2030.	STATICh Chstry Maxifly Stage, FT 1,3 1,3 1,5
	FAXINUM STURNGE AC+81 AC+81 AC+81 AC+81	PLAN 1 4AXIMLM FLG4,CFS 647. 697. 3747.
17.17.18L VALUE	MAXI:UK DEPTH DVER DAM 0.08 1.54	AATIO 0.17 0.18 0.50 1.00
ELEVATION STORAGE OUTFLOW	*AXI-CF RESERVUIR S.ELEV 0.63 6.78 7.58 8.24	·
PLAN 1	A 000 LD 10	

经销售的 计中央存储器 医克勒特氏病 计对应电路 医斯特特氏病 医电影 医电影 医电影 医电影 医电影 医电影 医电影 医电影 医电影 医电影	FLIND HYDRITHATH PACKAGE (HFC-1)	CAR STRETY VERSTON JULY 1974	LAST HUBIFICATION 26 FFB 79	433TF1E3 FOR HO JEYNELL APR 79	经存款的 计设备 医医疗性 医二氏性 医二氏性 医克勒特氏 医克勒特氏 医克勒特氏 医克勒特

PACCESTANTA PACKAGE (SEC-1 LUID HYDROGRAPH PACKAGE (SEC-1 AS SEFETY VERSION JULY 197 LAST FUDIFICATION 20 FFB 79 4937F1ED FOR HG SEVAFIL APR 79	PACKAC PACKAC TI TA PE	CKAGE (HFC-1) JULY 1974 26 FFB 79	-11) -11) -10 -10 -10							NE + +	PARRETTE VORK STATE OF ELVIRO	**************************************	
##19##################################	* 4 4 4	######################################		LOER P FC 127	ALDER PHND DAM DFC 1274-4417 BLACK NYSOOT MATESWAYS		ALDER	CREEK	965	**** BLACK RIVER GNETDA CCUN	########### RIVER BASIN A CCUNTY	**************************************	
ነፋለ	8 6 7	ပို ရ	•	2	0	0	0	3	0	,	٥	0	
•	7	-		4	~								
7	5	0.17	0.18		0.50	-							
80	×	ပ	BASIA	∠					~				
σ	K1		Ā	NFLOW	INFLOW HYDROGRAPH	. !	DAM						
10	Σ	~4		s ~	5.18	٠							
. 11	α.		51	ر. د	111	123	132	142					
12	-								1°C	0.15			
13	.78	9,46	0,625										
14	×	<b>6</b> 0		s	-								
15	¥	-	DAK	<b>3</b> .									
16	X		αż	CUTED	RCUTED OUTFLOW	n DAM	CANAL	FLOW AND	111	STOPLOGS CUT		- W/BREACH	
17	>					-	-						
1.8	7.	-							7	ĩ			
19	<b>7</b> 4	ပ		2	٣	3.95	4	4.5	10	•	6.5	6.7	
20	Y 5	ပ	38	ထ	157	231	233	272	337	505	909	649	
21	\$\$	U	0,01		0,5	61.1	91.4						
22	tu ••	ပ	0.6	£	7.0	6.7	7.6						
23	*	ပ											
54	<b>4</b>	6.7	2,63	m	1.5	550							
25	•	13			9*0	~	c	٢					
26	¥	~	DISTRA	ž,					1				
2.7	K1		ت	CWRSTA	EAM CHA	DCWKSTREAM CHANNEL ROUTING	DT ING						
28	>					-							
58	7	-											
30	46	0.04	0.04		0.04	0	21	500	90.0				
31	77	27	2.1	_	30	-	95	-	9.5	0	125	O	

			Ŭ							
			125							
			ပ							
		90.0	5.5							
		500	~	77						
•		77	35	210						
<b>-</b>		С	-4						•	
		0.04	30	190						
		0.04	21						•	
	-	90.0	10	125	56					
>	۲	46	4	۲,	×	<b>⋖</b>	4	∢	∢	4

						6.70	646.00					·					
						9.30	00.909										
	*		50 0			و•°در	505,00								2083 2083 2083 2083	ပ်မီးထိုပ်ပိပ်	r.;
	***		ACH TAUTO	<u>«</u> o	<b>1</b> .7		20	•	•						7693 1693 1693 1693 1693 1693 1693 1693 1	0 4 4 0 0 0 0	0.1
• • C D • • • • • • • • • • • • • • • •			- W/BREACH E ISTAGE I 0	LSTR	A ISPRAT	5,00	337,00			EXPL 0.		443			10. 30.6. 32. 2.	004400	0.0
7010 1170 1170 1170 1170 1170 1170 1170	* * * *		CGS CLT.		STCRA	.50	000			CAKEA U.		FAILEL 7.00		TES		•	
	***		L STEPLOGS JPRT C	4. 4. 0.	1SK	7	272.			ט פנער	CAPh 10 550.	NSEL C.	RATIC	CRCINATES	M M O UI HH H B O C C C C C		0.1
-4-W		LING	A AND ALL	10PT 0	×	4.00	93,00	•		ELEVL C	DATA EXPD 1.5	H DATA TFAIL 2.00	DAM, PLAN 1,	ORUGRAPH	0 4 8 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 4 W 00	0.0
117. 66. 115.20 386.20 4199.	***	HYDRUGRAPH PCUTING	CANAL FLOW N ITAPE	RUUTING DATA IRES ISAME 1 1	AMSKK O.		~	16	10.	EXPW ELL	DAM C00D 2.6	D4M BREACH ELBX T 0.60	DAM.	END-OF-PERIOD HYDROGRAPH	BUTFLCX 3. 604. 65.	STDRAGE 0. 0. 59. 8.	STAGE 0.1
160. 6.33 1747. 2154.	*	HYDRUGR	IFCCN C	RUUT 1RES 1	ر د د	3,95	231,00	61.	7.		TOPEL 6.7	00°I	STATION	:D-0F-PE	п 0°	N N	0
	*		LOW - DAM ICOMP 10	AVG 0.	STOL	00•	00.			.0 0.		BRWID 12.	O1	i.i.	0474 0476 0476	0000	0.0
100	***	•	ROUTED BUTFLOW - ISTAG ICOMP DAM 1	CL055 3.	NSTPS	ĸ	157,	•		SPWID 0.		_			28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000	0
INCHES CAS ARE ACTED A CAS ARE ACTED A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST A CAST	*		ROUT	0.0 0.0	z	2.00	88.30	°	1.	CREL O.							0.0
, i	* *			a				ບ	<b>.</b>						957 124	<b>→</b>	O
	***					•	•	n	•						3. 7. 150. 157. 10.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1
						STAGE	F107	CAPACITY	ELEVATION.								

					0001 000400	0 0 0 0 0 0	01m000					2 65 65 65 65 65 65 65 65 65 65 65 65 65	່
					2 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M		004000					4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ز ځ
EXPL 0.		FAILEL 7.00			, 30° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	204460	04000		VCLL/F 4029. 136. 2.34 74.34 953.			2000 2000 2000 2000 2000	÷
CCCL CAREA	5 A M N I C 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	hSEL FA	RATIC 1	CRDINATES	W WO UI HH H	200 muo	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		TCTAL	PATIC 2	CADINATES	4 4 4 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6	<b>.</b> 6
0° CC	DATA EXPO 1.5	ACH DATA TFAIL 2.00	PLAN 15		2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	င်ပံ့နှံလုပ် <i>ဝဲ</i>	00000		72-HCLR 135. 73.85 1 73.85	DAM'S PLAN 19	HYDROGRAPH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• ©
*0 13 % X1	PAN C000	DAM BREACI Z FLHM O 0.60	DN DAM.	END-OF-PERIOD HYDROGRAPH	604.	STORAGE 0. 59. 59.	00000000000000000000000000000000000000		24-HULR 354. 10. 2.54. 54.61 702.		E210D	047FLON 3. 5. 625. 63. 4.	S TORAGE
.0000 0.0000	TOPEL 6.7	1.0	STATION	END-OF.	0.00 7.47 7.90 2.00	0 6 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	045840	s	6-HCU4 554. 17. 1.07 27.28 27.28 256.	STATION	END-UF-P	0. 3. 82. 6.	ċ.
SPW1D 0		BRWID 12.			94. 94. 1.	00 m v 0 0	000000 444400	48.00 HOUR	0 6 4 4 4 K 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			1000 1000 1000 1000	• 0
CAEL					25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AT TIME 4	CFS CMS INCHES MA AC-FT			C. 5. 31. 5.	٠,
					6, 4	• • • • •	HNCONO	647.	Ţ				• c
					157.73	C U 4 4 6 6	'ව' බ' m m ' බ' බ	FLO., 15				1771	
								PEAK OUTFLO.					
						•							

• • •	0.0 0.2 0.2 0.1 0.1 0.1 0.1 0.1	15 697. AT	11 . s Jū +T		FAILURE AT 44.0C FO		A, C, 13, 651, 1539, 402, 312, 312, 312, 312, 312, 312, 312, 31	0. C. C. 61. 56. 24. 24. 0. C.	00.2 00.4 00.4 00.4 00.4 00.4	15 1973, AT	1r 7+ 0.5
• • • •	00000	TIME 48.00 HD	CFS 697. CNS 20. NCHES 20.		OURS		16 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00450 00450	00N400	TI''E 48.00 HG	CFS 1873 CMS 53 CMS 53 CMS AA AA AC FT
• <b>•</b>	ର୍ୟକ୍ତ ଓ ଓଟ୍ଡ୍ୟତ୍ତ	HOURS	1K 6-HCUR 16. 16. 11.14 26.84 314.	STATION		END-DF.	0. 1973. 191. 5.	665. 166. 00.	000000	JURS	14. 1750. 1. 1750. 1. 3.21. 81.63 81.63
	STAGE 0001 1001 1001 1001 1001		24-HOUCK 375. 11. 2.69 68.44 744.	DAM.		END-OF-PERIOD HYDROGRAFH	0UTFLOW 9. 14. 1745. 150. 3.	STORAGE 0. 0. 04. 13. 0.	STAGE 0.2 0.3 7.0 2.0 2.0 0.1		24-HELR 1066. 3C. 7.66 194.53 2115. 2608.
••	0.0000000000000000000000000000000000000		72_HCCR 143. 3.09 78.21 95.21 1049.	PLAN 1, RA			20. 125. 120. 5.		000000		72-H7CP 395. 11. 218.16 2372. 2925.
	1000100 100011		TCTAL	TIC 3		CRDINATES	22. 955. 22.		000400 040044		TCTAL
i d	004000 04000		VCLL'1E 147. 147. 3.10 78.73 856.				ເຄີຍ ທ່ານ ພ ທ່ານ ທ່ານ ທ່າ	c ~ 3 o c o	28 78 H H		VCELUE 144430 4C90 8065 218065 2367
 	004000 4						 ∨w.voww •••••••••••••••••••••••••••••••••••	0 m C 4 0 0	044400 644444		
ن د	0000000						™W Q 11 4 Q 11 11 W W W W W W W W W W W W W W W W	0 M 0 M 4 W 0 0	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		

0

STATION DAMA PLAN LA SATIC 4

BEGIN DAM FAILURE AT 42.00 FOURS

*11/0*

END-OF-PETIDD HYDRUGRAPH CRCINATES

	N N O W H W O O	0.44-00 40-44-	
132. 1274. 115.	0000	0 N N H O O	
400 mm mm mm mm mm mm mm mm m m m m m m	ଚ ଶ ଲ ଲ ଓ ଦ ଧ ୟ ଲ	 	VELLIE 28313. 17.25 438.09 4762. 5474.
16. 20.75. 180. 1.	0 4 9 % U U	000000 440000	TCTAL
27 25 5 2 2 2 2 2 2 3 5 5 5 5 5 5 5 5 5 5		001.00	72-H7CLR 795. 1 23. 435.18 54351.
00TFLOW 15. 181. 2	STDRAGE 3. 71. 22. 5.	STAGE 0.5 7.7 2.9 0.0	24-HOLR 2128. 66. 15.29 386.35
2 2 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	273. 273. 00.	00 C M 0 M	6-FEUR 3518. 100. 6.32 160.47 1744. 2152.
35 35 35 35 35 35 35 35 35 35 35 35 35 3	01280 01280	6.4 7.8 7.8 0.9 6.9	PEAK 3860. 109.
	0 m W T 4 G	00.00 00.00 14.10 01.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11	CFS CRS INCHES ACHT ACHT
20 32. 2031. 611. 58.		* 0 9 6 m	7.50
16 1799 277 277	0 4 6 4 6 6	4.00 4.70 5.75 0.00	
		E3K OUTFLG 1S	
		PE ŁK	

U

O

O

PEAK FLOW AND STORAGE (END OF PERION) SUMMARY FORMULTIPLE PLAN-RATIO ECCNEMIC COMPUTATIONS FLOW AND STORAGE FEET PER SECOND (CUBIC METERS PER SECOND)
ADEA IN SOURCE MILES (SOURCE MILES)

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

	ALDER POND DAM NY-1489	W/ BREACH	7	
LCMETERS)	PLAN RATIO 1 RATIO 2 RATIO 3 RATIC 4 6.17 0.18 0.50 1.CC	2825. 106.32)(	396C, 105.3C)	2864. 105.41)(
AREA IN SOUARE MILES (SOUARC KILCPETERS)	RATIOS APPI RATIO 3	689, 1913, 2825, 19,57)( 54,16)( 1CE,32)(	697, 1873, 386C, 19.74)( 53.05)( 105.3C)(	697, 1872, 3864, 19,74)( 53,02)( 105,41)(
ARE MILES	KATIO 2 0.18	683.	19.74)(	19.74)(
REA IN SOU	RATIO 1 G.17	650.	647. 18.33)( 1	647. 18.33)( 19
<b>∢</b>	PLAN	<b>~</b> ~	۳.	<b>~</b> ~
	AREA	5.18	DAM 5.18 (0.126.25)	5.18
	STATION	BASIN	DAM (O)	DNSTRM
	DPERATION	нуокоскарн ат	ROUTER TO	ROUTEN TO

# SUMMARY OF DAM SAFETY ANALYSIS

ALDER POND DAM  NY-1489  [W/ BREACH]	ב י		
	TIVE CF FALLIPE FCLRS C. C. C. A4.00		
TCP OF DAM 6.70 61. 649.	TIME OF MAX DUTFLOW HOURS 48.00 48.00 48.00 48.00 48.00		
	CVRATICA CVR TCP IFURS C. 2.00 10.00 16.00	<u>λ.</u> α	F 200000
SPILLKAY CREST 0. 0.	4AXIMIR DUTFLCK CFS C47 697 1873	STATION DNSTRP	NAX STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI STAGESTI
VALUE	FAXIMUS STORAGE AG-FT AG-FT 61. 68.	PLAN 1	44×1910M FLOW,CFS 647 1872 3864
JEITIAL VALUE 0. 0.	MAXIMUM UEPTH DVER DAM 0.0 0.08 1.19	PL	8 A 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ELEVATION Storage Dutflew	MAXIMUM RESEAVOIR N.S.ELEV 6.38 7.39 7.89		
PLAN 1	RATIC CF CF 0.17 0.18 0.50 1.00		

#### FORESTPORT FEEDER NEAR BOONVILLE, N.Y.

Location.—Slope station with two water-stage recorders at lower end of feeder, above point where it enters the basin at Boonville, Oneida County. Gage 1 is in Hawkinsville; gage 2 is 2.53 miles downstream from gage 1 and 1 mile upstream from basin in Boonville.

Records available.—October 1915 to September 1933 during canal seasons. Remarks.—Records fair. Discharge determined by use of Chezy formula, variation in coefficient "C" during season being based on current-meter measurements. Effective slope relation nonexistent Apr. 19-20, May 7-12; flow determined from stage-discharge relation. Canal diverts water from Black River at Forestport.

Discharge, in second-feet, 1932-33

Day		Oct		Nov.	Apr.	May	June	July	Aug.	Sept.
1			69	• 72		34	34	107	95	* 141
2			78	a 96		35	• 35	117	95	• 137
3			57	- 64		46	34	120	95	147
1			×7	• 47	1	41	33	115	97	144
5	,		25	• 42		39	32	ity	92	149
d			52	- 49	ļi	38	34	122	91	• 150
7			58	49	1	32	38	123	101	- 119
8			61	• 47	1	22	49	120	121	• 120
9			63	• 41	39	22	57	117	135	+ 153
10			57	55	37	26	5H	122	137	150
11			53	61	39	27	58	123	140	154
12			58 1	54	59	26	60	135	136	153
13			63	45	57	34	63	151	125	147
14			58	42	- 55	39	73	150	86	• 146
15	<b></b> .		52	- 40	49	- 36	• 75	146	143	• 146
16			50	- 39	43	• 37	• 77	142	150	• 144
17			48	• 41	59	4 37	• 79	145	150	141
18			51	• 40	62	4 36	84	127	• 150	147
19	•••••		54	• 41	31	• 37	88	106	• 148	148
20			52	78	• 31	37	69	102	144	150
21			49	52	- 37	38	9n	101	148	150
22	•••••		49	• 55		36	109	See .	151	151
23		1	45	- 58	39	35	110	H	150	149
24			44	• 53		3.5	iio	96	• 128	149
25			38	- 33	. 35	35	103	96	• 60	147
26		ĺ	32	]	37	• 35	118	95	117	148
27			41		. 38	35	119	96	iis	150
29			46		36	35	121	94	151	149
29			34		42	39	122	91	154	• 150
30	• • • • • • • • • • • • • • • • • • • •		36		39	40	119	87	154	147
31			34		. 39	38		94	• 154	•••
31		·  ·	34		1			34	* 134	
1.		10						36	Mini-	
	Maxi- mum	Mini- mum	N	(ean		Month		Maxi- mum	winu	Mean
				·						
October	152	32		58.8	June	• • • • • • • • • • • • • • • • • • •		122	32	75.9
November 1-24	96	39		53. 5	July			151	87	115
April 9-30.	62	31		42.8	August			154	69	127
May	46	22		34.8	Septemb			154	119	146
	•-							,		1

[·] Estimated.

Note.—Canal probably carried normal winter flow of about 30 second-feet from Nov. 25, 1932, to Apr. 3, 1933.

#### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLAMEOUS SITES

Station No.	Station name	ents made at low-flow partial-record stations during Location	Drainage area (sq mi)	Period of record	Measurements	
					Date	Discharge (cfs)
		Susquehanna River basin Continued				
5131.9	Little Choconut Greek at Stella, N. Y.	Lat 42°07'38", long 75°56'42", at bridge on Stells-Ireland Road, at Stella. Brooms County, and 2.6 miles upstream from mouth.	12.2	1965-67	12-31-56 11-14-56 5-26-67 7- 2-67 6- 6-67 8-14-67 9-17-67	0.22 1.13 4.24 1.02 3.63 2.16 90
5160	Cayuta Creek at Waverly, N. Y.	Lat 42°00'32", long 76°31'33", at bridge on Ithaca Street, Waverly, Tioga County.	140	195^-64. 1966-67	4-26-67	54. é
	L	Allegheny River basin	<u></u> ,			
107	Osvayo Creek near Hill Grove, N. Y.	Lat 42"00"28", long 78"19"40", at bridge 1.4 miles southeast of Mill Drove, Cattaraugus County, and 2.1 miles upstream from mouth.	243	1957-F2. 1954. 1967	6-21-27	24"
109	Fivenile Creek at Allegany, N. Y.	Lat 42°75'48", long 78°30'12", at bridge on State Hishway 17, 1.2 mile west of Allegheny, Cattaraugus County.	37.0	1903.) 1957-60. 1964. 1967	6-14-67 9-20-67	3.41 4.89
132	Cassadaga Freek at Ross Mills, N. Y.	Lat 42°.3°13", long 73°13°25", at bridge, at Ross Mills, Chautaugum County, and 2.3 miles northwest of Falconer.	125	1952-51. 1957-64. 1967	(+ 7-27 9-20-67	77.8 20.3
	<u> </u>	Streams tributary to Lake Ontaric	L'			
*2332.5	Buttermilk Greek near Ithaca, N. Y.	Lat 10"05"02", long 70"31"28", at bride on State Highway 13, 0.2 mile upstream from mouth, and 2 miles south of Ithmes. Thompkins	11.5	1961-52,	4-29-57	11.
2509.90	Woodhull Creek near Forestport, N. Y.	County.  Lat 470748", long To*10122", at bridge on from hishway, 2.2 miles northeast of Forestport, Onelds County, 2.4 miles upstream from Little Woodhull Creek, and 4.2 miles upstream from south and Forestport Receivelr.	70.2	1965-67	10- 0-76 11-70-00 5-16-67	44.7
257 <b>9.98</b>	Alder Greek at Alder Creek, N. Y.	Lat 4"".5'28", long 75"13'45", at eulvert on State Highway 12, 0.1 mile northwest of Alder Creek, Oneida County, and 1.3 miles upstream from mouth.	4,75	1947	10	4.79 4.79 7.68
2523.95	Curmines Crock near Hawkinsville, N. Y.	Lat 47**0122", long "c"ltip", at bribe in County Highway 8 (Howsback Road) 2.0 miles northeast of Hawkinsville, Oneida County, and 3 miles upstream from mouth.	3.93	1966-07	10+ 0+00 10+ 1+00 1+20+07 0+15+07 9+00+07	0.05 8,00 9.00 4.57 1.96
2525.05	Mill Creek at Boomville, N. Y.	Lat 4**P8'41", long 75'20'52", at bribe on State Hishway 224, ".7 mile southwest of Boonwille, "helia County, and 5.4 miles up- stream from mouth.	4.59	1967	10- 1- 6 4-74-67 1- 4-74-67 1- 4-7 6-11-67	1.15 2.67 2.11 2.12
2530	Sucar River at Talcottville, N. Y.	Lat 45°72'n9", long 75°22'n3", at brides on State Hickag 12-D, 0.7 mile north of Talcottville, Lewis County.	41.5	1990-706 1070-77 1957-61. 1966-7	in- 6-66	;•
2530.05	Moose Greek near Talcottville, N. Y.	Lat 41"folgo", long 75"21"19", at bridge on Ciarle Highway 10D, 1.6 miles upstroam from mouth, and 2 miles moutheast of Talentville, Levis County.	27.4	<u> </u>	1 = 1 = + 1 = 1 = + C=10 = **	wii.
2549.00	Copper Creek at Fowlersville, N. Y.	Int 43*77'27", long 75*15*10", at bribe on town highway, 0.2 mile upstream from mouth, ani 7.8 mile east of Fowlersville, Levis County.	28.5	1961	19 = 7+06 14 0+07 2-18-97	18.7 2.3 19.1

^{*} Also a crest-stage partial-record station.

# Operated as a continuous-record saging station.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at low-flow partial-record stations during water year 1974 -- Continued

Drainage Period Station Discharge Station name (im pe) record Date (cfs) No. Location. Streams Tributary to Lake Ontario Lively Run at Interlaken Beach, 04234036 Lat 42°37'48", long 76°41'17", Seneca County, 1.97 1965-66 6- 4-74 T 150 feet (46 m) upstream from mouth at N.Y. Intertaken Reach 1972 Lat 42°39'54", long 76°42'06", Seneca County, at bridge on County Highway 153, at Sheldrake, and 0.1 mile (0.2 km) upstream from mouth. 04234038 Sheldrake Creek at 1955 6- 4-74 . 76 Sheldrake, N.Y. 1970-72 1974 Hicks Cully Creek at Lat 42*44'43", long 76*46'14", Seneca County, at culvert on State Highway 89, 0.1 mile (0.2 km) upstream from mouth, and 1.7 miles (2.7 km) south of East Varick. 04234048 5.20 1965-66 6- 4-74 . 30 1974 Lat 42*48*28", long 76*42*08", Cayuga County, at bridge on State Highway 90, 0.6 mile (1.0 km) upstream from mouth, and 1.7 miles (2.7 km) south of village boundary of Union 04234053 Creat Cully Brook 6- 5-74 2.5 near Union Springs, 1974 Springs. Lat 42°52'44", long 76°41'02", Cayuga County, at bridge on County Highway 48, 1.4 miles (2.3 km) north of town line of Union Springs, and 2.4 miles (3.9 km) upstream from mouth. 1964-66 6- 5-74 2.5 04234058 Yawger Creek near 1970-72 Union Springs, 1974 04235276 Black Brook at Lat 42°59'30", long 76~48'12", Seneca County, at bridge on County Highway 101, in village 6- 5-74 2.6 1970-72 Tyre. N.Y. of Tyre, and 0.8 mile (1.3 km) upstream from mouth. 1974 Lit 43°01'17", long 76°41'21", Cayuga County, at bridge on Wisley Road, 1.0 mile (1.6 km) northeast of Montezuma, and 1.7 miles (2.7 04235281 1965-66 6- 5-74 9.6 Crane Brook at Montezuma, N.Y. 1974 Lat 43°07'36", long 76°41'10", Cayuga County, at culvert on Spring Lake Road, at Spring Lake, and 1.7 miles (2.7 km) upstraam from mouth. 04235293 Spring Lake Outlet 1965-66 6- 5-74 2.1 at Spring Lake, 1974 Lat 43°27'48", long 75°10'23", OneLda County, in bridge in dirt road 2.3 miles northeast of Forestport. 04250990 Woodhull Creek 1973-74 8-29-74 93 tear Tirestport. Lat 43°25'28", long 75°13'45", Oneida County, at culvert on State Highway 12, 0.1 sile northwest of Alder Creek, and 1.3 miles upstream from mouth. 8-29-74 04250998 Alder Creek at Alder Creek, N.Y. 1971-74 Lat 43°29'56", long 75°16'24", Oneida 8-29-74 33 04252400 Cummings Creek at Hawkins-ville, N.Y. County, at bridge on town highway, 0.1 mile upstream from mouth, and 0.4 1973-74 mile northeast of Hawkinsville. Lat 43°28'41", long 75°20'52", Oneida County, at bridge on State Highway 294, 0.7 mile (1.1 km) southwest of Boonville, and 3.4 miles (5.5 km) upstream from south. 1967 8-27-74 1.7 04252505 Mill Creek at Boonville, N.Y. 1973-74 Let 43°30'22", long 75°21'09", Lewis County, at bridge on State Highway 120, 1.6 miles (2.6 km) upstream from mouth, and 2.0 miles (3.2 km) southeast of Talcottville. 1966-67 8-27-74 19 04253005 Moone Creek near Talcottville, 1973-74 Lat 43°37'27", long 75°15'30", Lewis County, at bridge on town highway, 0.2 mile (0.3 km) upstream from mouth, and 0.8 mile (1.3 km) east of Fowlersville. 8-29-74 16 04254900 Copper Creek at 1973-74 Fowlersville, Let 43°37'42", long 75°24'43", Lewis County. at bridge on State Highway 12D, at Turin, and 2.7 miles (4.3 km) upstress from mouth. 1967-68 1971-74 Mill Creek at 8-28-74 2.1 04254930 Turin, N.Y. Lat 43°40'00", long 75°21'27", Levis County, at bridge on River Road, 0.2 mile (0.3 km) upstream from mouth, and 0.6 mile (1.0 km) 1966-67 1973-74 8-28-74 16 22.7 04254960 Fish Creek at Greig, N.Y.

south of Graig.

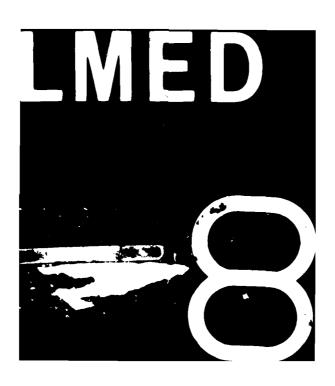
APPENDIX D REFERENCES

#### ADLER POND

#### APPENDIX D

### REFERENCES

- 1) H.W. King and E.F. Brater, <u>Handbook of Hydraulics</u>, 5th edition, McGraw-Hill, 1963.
- 2) C.S. Pearson, R. Feuer, M.G. Cline; <u>Oneida County Soils Soil Association Leaflet 10</u>; New York State College of Agriculture, November 1960.
- 3) University of the State of New York, Geology of New York, Education Leaflet 20, reprinted 1973.
- 4) HEC-1 Flood Hydrograph Package Dam Safety Version, September 1978.
- 5) Engineering Manual 1110-2-1405; Flood-Hydrograph Analyses and Computations, August 1956.
- 6) U.S. Department of Agriculture, Soil Conservation Service;
  National Engineering Handbook; Section 4 Hydrology, August 1972.
- 7) U.S. Department of Commerce; Weather Bureau; <u>Hydrometerological Report No. 33</u>: Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6,12,24, and 48 Hours, April 1956.


#### U.S. Department of Interior; BUREC:

- 8) Design of Small Dams, 2nd edition (rev. reprint), 1977
- 9) <u>Hydraulic and Excavation Tables</u>, 11th edition, (Reprinted) 1974.

#### U.S. Geological Survey:

- 10) Water Supply Paper 744; (1933); Part 4; St. Lawrence River Basin.
- 11) Water Resources Data for New York 1967; Part 1, Surface Water Records.
- 12) <u>Water Resources Data for New York 1974</u>; Part 1, Surface Water Records.

APPENDIX E DRAWINGS

